Diastereoselective nucleophilic additions to vinyl phosphine oxides

Björn Bartels, Jonathan Clayden, \dagger Concepcion Gonzalez Martín, Adam Nelson,** Matthew G. Russell and Stuart Warren

University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 1EW
Received (in Cambridge) 25th March 1999, Accepted 19th May 1999

Some hydrogen, carbon, silicon, sulfur, nitrogen and oxygen nucleophiles react diastereoselectively with γ-oxygenated chiral vinyl phosphine oxides to give β-substituted phosphine oxides. Lithium N-benzyl- α-methylbenzylamide adds to prochiral vinyl phosphine oxides in the presence of trimethylsilyl chloride to provide, after protodesilylation, β-amino phosphine oxides as single diastereoisomers.

The diphenylphosphinoyl group is a powerful stereodirecting group which can be used to control relative and absolute stereochemistry as well as double-bond geometry. ${ }^{1}$ As part of a continuing programme of research, we have shown that β-amido phosphine oxides $1(\mathrm{X}=\mathrm{PhCONH})$ are precursors of allylic amides ${ }^{2}$ (e.g. 2) and that methyl-substituted phosphine oxides $\mathbf{1}$ $(\mathrm{X}=\mathrm{Me})$ are valuable intermediates in the synthesis of allylic alcohols 3 (e.g. 3), alkenyl oxazolidinones ${ }^{4}$ (e.g. 4) and allylic sulfides 5 (e.g. 5) with 1,4-related chiral centres across double bonds of controlled geometry. Phosphine oxides $1(\mathrm{X}=\mathrm{Me})$ have also been established as intermediates in the synthesis of optically active cyclopropyl ketones ${ }^{6}$ (e.g. 6). In this paper,

1

4

5

6
we describe how β-functionalised phosphine oxides can be synthesised by adding nucleophiles to vinyl phosphine oxides (Scheme 1).

In contrast to vinyl phosphonates, ${ }^{7}$ vinyl phosphine oxides have not been widely exploited as synthetic intermediates. Early studies have shown that amines, ${ }^{8}$ amides, ${ }^{2}$ organocuprates ${ }^{9}$ and silyl cuprates ${ }^{10}$ add to the electrophilic double bond of achiral vinyl phosphine oxides. Vinyl phosphine oxides are also known to undergo cycloaddition reactions with dipolarophiles ${ }^{11}$ and dienes ${ }^{12}$ under thermal conditions. In this paper, we describe the first study to focus on the diastereoselectivity of nucleophilic additions to vinyl phosphine oxides. Previously, nucleophiles have been added to vinyl phosphine oxides with a chiral phosphorus atom but these reactions did not result in the formation of any new chiral centres. ${ }^{9}$

Our syntheses of β-functionalised phosphine oxides $\mathbf{8}$ and $\mathbf{1 0}$

[^0]are based on two different strategies. To start with, we describe some nucleophilic additions which are controlled by the γ chiral centre of vinyl phosphine oxides 7 (Strategy A, Scheme 1). Then, we describe the reactions of some prochiral phosphine oxides 9 with a homochiral nucleophile (Strategy B, Scheme 1). We describe the diastereoselectivity of the reactions involved and propose models to explain the sense of the asymmetric induction.

Synthesis of vinyl phosphine oxides

We synthesised the prochiral vinyl phosphine oxides 9 by activation and elimination of the β-hydroxy phosphine oxides 11 (Scheme 2). Treatment of the silyl ethers $\mathbf{1 2}$ with sodium hydride ${ }^{12}$ and the mesylate 13 (synthesised in situ from the β-hydroxy phosphine oxide 11d) with butyllithium gave the vinyl phosphine oxides 9 in moderate to excellent yield and with complete E stereoselectivity. ${ }^{13}$

The optically active γ-hydroxy vinyl phosphine oxides $\mathbf{1 8}$ were produced using a two-step sequence which had been previously used to synthesise the unsaturated amides $\mathbf{1 4} .^{14}$ Diphenylphosphinoyl diols 16, synthesised by asymmetric dihydroxylation of the allylic phosphine oxides $\mathbf{1 5},{ }^{15}$ were converted into mixtures of diastereomeric cyclic sulfites 17 and eliminated using DBU to give the γ-hydroxy vinyl phosphine oxides 18 (Scheme 3 and Table 1). The elimination of anti- and syn-16b to give the same enantiomer of the vinyl phosphine oxide 18b (entries 2, 3, Table 1 and Scheme 4) allowed us to determine the absolute configuration of the diol anti-16b. ${ }^{15}$
The eliminations of diphenylphosphinoyl diols 16 were highly E selective. ${ }^{13}$ With the simple diols $\mathbf{1 6 a - d}\left(\mathrm{R}^{2}=\mathrm{H}\right.$, entries $1-5$, Table 1), the elimination proceeds through the transition state $\mathbf{1 9}$ in which the diphenylphosphinoyl group and R^{1} are

11a; $\mathrm{R}=\mathrm{Ph}, 85 \%$
11b; $\mathrm{R}=p \mathrm{MeOC}_{6} \mathrm{H}_{4}, 99 \%$ 11c; R $=2$-furyl, 88% 11d; $\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}, 88 \%$

9a; $\mathrm{R}=\mathrm{Ph}, 68 \%$
$\mathbf{b} ; \mathrm{R}=p \mathrm{MeOC}_{6} \mathrm{H}_{4}, 99 \%$
$\mathbf{9 c} ; \mathrm{R}=2$-furyl, 45%

Scheme 2

14

a; $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$
b; $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{H}$
c; $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}$
d; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$
e; $R^{1}=B u, R^{2}=M e$
f; $\mathrm{R}^{1}=$ cyclohexyl, $\mathrm{R}^{2}=\mathrm{Me}$

Scheme 3

trans on the forming double bond. When $\mathrm{R}^{2} \neq \mathrm{H}$ (entries 6, 7, Table 1), elimination via the alternative transition state 20 (in which the diphenylphosphinoyl group sits above the sulfite ring) becomes significant and the E stereoselectivity of the reaction is lowered.

$19(\rightarrow E-18)$

$20(\rightarrow Z-18)$

The diphenylphosphinoyl diol syn-16a was activated as the bis-trimethylsilyl ether 21. Treatment of 21 with two equivalents of LDA gave the vinyl phosphine oxide 22 as a $98: 2$ mixture of geometric isomers (Scheme 5). Asymmetric epoxidation of the δ-hydroxy allylic phosphine oxide ${ }^{16} 23$ and workup with 30% sodium hydroxide solution gave the optically active diol 24, which was protected as the silyl ether 25. Similarly, treatment of the diphenylphosphinoyl epoxide 27 (prepared from the allylic phosphine oxide 26) with LDA gave the vinyl phosphine oxide 28 as a single geometric isomer.

Alcohols 18c,d were protected as silyl ethers using tertbutyldimethylsilyl trifluoromethanesulfonate (triflate) and 2,6lutidine (2,6-dimethylpyridine) (Scheme 6). In this way, it was possible to isolate an excellent yield of the silyl ether 29a. Unfortunately, the yield of $\mathbf{2 9 b}$ was much lower (32%) because the basic conditions of the reaction promoted isomerisation to the conjugated silyl enol ether 31, which was obtained in 58% yield. The use of milder reaction conditions (imidazole and tert-butyldimethylsilyl chloride) provided a solution to this problem and allowed silyl ether 29b to be isolated in quantitative yield. Vinyl phosphine oxides $\mathbf{1 8 c}$,d were easily protected

Table 1 Synthesis of γ-hydroxy vinyl phosphine oxides 18

Entry	Starting material	R^{1}	R^{2}	Product	Ee (\%)	Ratio $^{a} E: Z$	Yield $^{b}(\%)$
1	syn-16a	Me	H	$(R) \mathbf{- 1 8 a}$	46	$>95: 5$	58
2	syn-16b	Et	H	$(R) \mathbf{- 1 8 b}$	76	$>95: 5$	65
3	anti-16b	Et	H	$(R) \mathbf{- 1 8 b}$	22	$>95: 5$	78
4	syn-16c	Bu	H	$(R)-\mathbf{1 8 c}$	76	$>95: 5$	99
5	syn-16d	Ph	H	$(S)-\mathbf{1 8 d}$	86	$>95: 5$	89
6	syn-16e	Bu	Me	$(R)-\mathbf{1 8}$	74	$83: 17$	81
7	syn-16f	$\mathrm{c-Hex}$	Me	$(R) \mathbf{- 1 8 f}$	84	$88: 12$	91

${ }^{a}$ By $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Yield of mixture of geometric isomers.

as MOM acetals by treating the alcohols with methoxymethyl chloride and triethylamine (Scheme 6).
Attempted benzylation of the alcohol 18d using sodium

hydride, p-methoxybenzyl chloride and tetrabutylammonium iodide gave the ketones $\mathbf{3 2}$ and $\mathbf{3 3}$ in 28% and 52% yield respectively. Presumably, sodium hydride is basic enough to remove the benzylic proton from anion $\mathbf{3 4}$ to give the dianion $\mathbf{3 5}$ which is stabilised both by the diphenylphosphinoyl group and by extensive conjugation (Scheme 7). Protonation or alkylation of 35

Scheme 7
would give the observed ketones $\mathbf{3 2}$ and 33 . An alternative mechanism for the direct formation of the ketone 32 may involve 1,2 -migration of the marked hydrogen in the anion 34 (Scheme 7). Though disappointing, this observation did provide some evidence for a mechanism which has been proposed to explain the formation of ketones like 32 as by-products of Horner-Wittig eliminations of diphenylphosphinoyl diols $16 .{ }^{15}$

Addition of hydrogen, carbon and silicon nucleophiles to γ-substituted vinyl phosphine oxides

Initially, we studied the reduction ${ }^{17}$ of vinyl phosphine oxides 18 because these reactions are not always complicated by the issue of diastereoselectivity (Scheme 8 and Table 2). ${ }^{18}$ Sodium

Scheme 8
borohydride was not sufficiently reactive to reduce the vinyl phosphine oxide 18c (entry 1, Table 2); in fact, later studies revealed that vinyl phosphine oxides are remarkably resistant to attack by other nucleophiles including organocuprates. In contrast, treatment of the unprotected vinyl phosphine oxides 18c, $\mathbf{d}\left(\mathrm{R}^{2}=\mathrm{H}\right)$ with lithium aluminium hydride gave γ-hydroxy phosphine oxides 36a,b in very good yield. Similar phosphine oxides have been synthesised by classical resolution and are useful intermediates in the synthesis of homoallylic alcohols. ${ }^{19,20}$ Treatment of the vinyl phosphine oxides 18e,f ($\mathrm{R}^{2}=\mathrm{Me}$) with lithium aluminium hydride gave the corresponding γ-hydroxy phosphine oxides 37 in high yield, though the reaction was not very diastereoselective (entries 4, 5, Table 2).
An alternative approach to alcohols 37 would involve the addition of methylmetal reagents to vinyl phosphine oxides $\mathbf{1 8}$ ($\mathrm{R}^{2}=\mathrm{H}$) (Scheme 9). In contrast to reactions of similar sulfones, ${ }^{21}$ phosphine oxides $\mathbf{1 8}$ reacted sluggishly with Me_{3} CuLi_{2} (entries 1a, b, Table 3), reflecting the large size and less electron-withdrawing nature of the diphenylphosphinoyl group compared to the phenylsulfonyl group. The reactions did, however, reach completion after 7 days in refluxing ether. The sense of the stereoselectivity of our reactions was the same as the additions to the corresponding sulfones; ${ }^{21}$ the anti selectivity was $2: 1$ (with $\mathbf{1 8 a}, \mathrm{R}=\mathrm{Me}$, entry 1, Table 3) and $4: 1$ (with

Table 2 Reduction of γ-hydroxy vinyl phosphine oxide 18

Entry	Starting material	R^{1}	R^{2}	Reagents ${ }^{\text {a }}$	Product	Ratio ${ }^{\text {b }}$ anti: syn	Yield ${ }^{\text {b }}$ (\%)
1	18c	Bu	H	A	-	-	c
2	18c	Bu	H	B	36a	-	88
3	18d	Ph	H	B	36b	-	87
4	18e	Bu	Me	B	37b	59:41	83
5	18 f	c-Hex	Me	B	37b	61:39	85

${ }^{a}$ Reagents: A. $\mathrm{NaBH}_{4}, \mathrm{EtOH}$; B. LiAlH_{4}, THF. ${ }^{b}$ Isolated ratio of diastereomers. ${ }^{c}$ No reaction by NMR.

Table 3 Addition of organocuprates to vinyl phosphine oxides $\mathbf{1 8}$

Entry	Starting material	R^{1}	Conditions	Ratio anti:syn	Products (Yield, \%)
1a	18a	Me	$\mathrm{Me}_{3} \mathrm{CuLi}_{2}$, ether, $35^{\circ} \mathrm{C}, 7$ days	63:37 ${ }^{\text {a }}$	37a (60\% ${ }^{\text {b }}$)
1 b	18c	Bu	$\mathrm{Me}_{3} \mathrm{CuLi}_{2}$, ether, $35^{\circ} \mathrm{C}, 7$ days	78:22 ${ }^{\text {c }}$	anti-37b (41\%); syn-37b (22\%)
1 c	18d	Ph	$\mathrm{Me}_{3} \mathrm{CuLi}_{2}$, ether, $35^{\circ} \mathrm{C}, 7$ days	74:26 ${ }^{\text {c,d }}$	anti-37c (22\%); syn-37c (10\%)
2	18d	Ph	$\mathrm{Me}_{3} \mathrm{CuLi}_{2}$, ether, $35^{\circ} \mathrm{C}, 7$ days	-	e
3	18c	Bu	$\mathrm{Me}_{2}(\mathrm{CN}) \mathrm{CuLi}{ }_{2}$, ether, $35^{\circ} \mathrm{C}, 3$ days	77:23 ${ }^{\text {c }}$	f

${ }^{a}$ Ratio of isolated products. ${ }^{b}$ anti:syn $63: 37 .{ }^{c}$ Determined by analysis of the crude reaction mixture by 400 MHz NMR. ${ }^{d} 30: 52: 18$ mixture of 32, anti- and syn-37c. ${ }^{e}$ Mainly ketone $\mathbf{3 2}$ by NMR. ${ }^{f} 19: 63: 18$ mixture of starting material, anti- and syn-37b.

18c, $\mathrm{R}=\mathrm{Bu}$, entry 1 , Table 3). Addition of a cyanocuprate to 18c was also successful and, unlike the corresponding reactions of vinyl sulfones, ${ }^{21}$ the ratio of β-hydroxy phosphine oxides $\mathbf{3 7 b}$ obtained was similar to that observed with the higher-order cuprate $\mathrm{Me}_{3} \mathrm{CuLi}_{2}$ (compare entries 1 b and 3, Table 3).
The reaction of the vinyl phosphine oxide $\mathbf{1 8 d}$ with $\mathrm{Me}_{3}-$ CuLi_{2} was lower yielding than those of 18a and 18c (compare entry 1 c with entries 1a, b , Table 3). In this case, phenyl ketone 32, a familiar ${ }^{15 b}$ by-product from some attempted protection reactions was also isolated. Changing the solvent from ether to THF served only to promote the formation of the phenyl ketone 32 (compare entry 2 with entry 1c, Table 3).

The anti stereoselectivity of these cuprate addition reactions was established in two independent ways. The phosphine oxide anti-37a was spectroscopically identical with material previously synthesised by stereospecific hydroboration ${ }^{22}$ of the allylic phosphine oxide 38 and the phosphine oxides $\mathbf{3 7 b}, \mathbf{c}$ were converted into cyclic derivatives 39 whose structure could be determined by NMR. ${ }^{6,22}$ The anti and syn diastereomers of hydroxy phosphine oxides $\mathbf{3 7 b}, \mathbf{c}$ were readily separable by preparative HPLC.

38

39

We tried to develop a complementary route to hydroxy phosphine oxides syn- $\mathbf{3 7}$ along the lines reported by Carretero for similar vinyl sulfones. ${ }^{21}$ Treatment of the acetal 30b with LDA in the presence ${ }^{23}$ of chlorotrimethylsilane gave the α-silyl vinyl phosphine oxide 40 (Scheme 10). Unfortunately, 40 was resistant to attack by methylmagnesium bromide.

Scheme 10
The addition of the phenyldimethylsilyl group (a masked hydroxy group ${ }^{10}$) to vinyl phosphine oxides was also investigated. Treatment of the unprotected vinyl phosphine oxide 18c with four equivalents of the phenyldimethylsilyl cuprate reagent ${ }^{24}$ at $-78^{\circ} \mathrm{C}$ gave a $83: 17 \mathrm{E}: Z$ mixture of the allylic phosphine oxides ${ }^{15} 41$ (Scheme 11). These compounds are

Scheme 11

presumably the products of a tandem addition-Peterson elimination reaction, confirming that silyl cuprates do add to vinyl phosphine oxides at a much lower temperature than methyl cuprates. ${ }^{25}$

In the light of this result, the phenyldimethylsilyl cuprate reagent was added to some protected γ-hydroxy phosphine oxides to give the diphenylphosphinoyl silanes 42 and 43 in high yield and often with high stereoselectivity (Table 4 and Scheme 12). The stereoselectivity of this addition reaction was remarkably dependent on the exact stoichiometry of the cuprate reagent (compare entries 3 and 4; Table 4). The anti selectivity of the addition of the silyl cuprate reagent to the vinyl phosphine oxide 30b was deduced from the acid-catalysed Peterson elimination ${ }^{26}$ (which is known to be anti stereospecific) of the product; treatment of a 88:12 mixture of anti- and syn-30b with acidic methanol gave a $86: 14$ mixture of E - and Z-44 (Scheme 13). Silyl ether anti-42b was even less

Table 4 Addition of silyl cuprates to vinyl phosphine oxides 29 and $\mathbf{3 0}$

Entry	Starting material	R	P	Ratio ${ }^{a}$ anti:syn	Product	$\begin{aligned} & \text { Yield }^{b} \\ & (\%) \end{aligned}$
1	29a	Bu	TBDMS	70:30	42a	84
2	29b	Ph	TBDMS	>95:5	42b	58
3	30b	Ph	$\mathrm{CH}_{2} \mathrm{OM}$	88:12	$43{ }^{\text {c }}$	71
4^{d}	30b	Ph	$\mathrm{CH}_{2} \mathrm{OMe}$	66:34	43	41

${ }^{a}$ Determined by analysis of the crude reaction mixture by 400 MHz NMR. ${ }^{b}$ Isolated yield. ${ }^{c}$ Decomposed to 44 on standing. ${ }^{d}$ Ratio of silyllithium: $\mathrm{CuCN} 3: 2$.

Scheme 12
stable and decomposed to the allylic phosphine oxide (E)-44 on standing in deuterochloroform.

Proposed origin of the factors which underlie the stereoselectivity of reactions of vinyl phosphine oxides with cuprate reagents
The factors (double bond geometry, substrate electrophilicity, nature of the cuprate reagent) which control the diastereoselectivity of Michael reactions of α, β-unsaturated carbonyl compounds are very complex indeed. ${ }^{27}$ In view of the small coupling constants ($3.5-4.7 \mathrm{~Hz}$) between the protons β and γ to phosphorus, we suggest that phosphine oxides 18, 29 and $30\left(\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{TBDMS}, \mathrm{CH}_{2} \mathrm{OMe}\right)$ mainly populate the conformation in which the $\mathrm{C}-\mathrm{O}$ bond more or less eclipses the carboncarbon double bond (Fig. 1). We have shown that the addition of methyl cuprates to unprotected vinyl phosphine oxides 18 and of silyl cuprates to protected phosphine oxides were anti selective. The diastereoselectivity of these reactions increased with the size of the R substituent (compare entries 1a-c, Table $3, \mathrm{R}=\mathrm{Me}, \mathrm{Bu}, \mathrm{Ph}$; entries 2 and 3 , Table $4, \mathrm{R}=\mathrm{Bu}$ and Ph), suggesting that R may shield the top face of $\mathbf{4 5}$, forcing the cuprate reagent to attack from below. A similar argument has been proposed to explain the diastereoselectivity of cuprate additions to chiral vinyl sulfones. ${ }^{21}$ Alternatively, the observed diastereoselectivity may stem from addition of the cuprate reagents to the lower face of a reactive conformation 46 in which $\pi^{*}(\mathrm{C}=\mathrm{C})$ overlaps with $\sigma^{*}(\mathrm{C}-\mathrm{O})$ (Fig. 2).

Diastereoselective additions of nitrogen, sulfur and oxygen nucleophiles to chiral $\boldsymbol{\gamma}$-substituted vinyl phosphine oxides

We also studied the addition of heteroatomic nucleophiles to chiral vinyl phosphine oxides. For example, sodium thiophenolate added cleanly, though not very diastereoselectively to silyl ether 22 (Scheme 14). The sense of the diastereoselectivity of this transformation was not determined.
The addition of sodium benzamide (which has been added to vinyldiphenylphosphine oxide ${ }^{2}$) to the silyl ether $\mathbf{2 2}$ was less successful: only starting material and the hydroxy vinyl phosphine oxide 18a were isolated. We felt that the energetic barrier to nucleophilic attack might be overcome by making the reaction intramolecular. With this in mind, urethane 48 was

Fig. 1

Fig. 2

Scheme 14

synthesised by treating the alcohol 18c with benzyl isocyanate and triethylamine; cyclisation of 48, triggered by treatment with sodium hydride in DMF, gave the oxazolidinone 49 in 86% yield as a $88: 12$ mixture of diastereoisomers (Scheme 15). Similar reactions of vinyl sulfones suggest that the trans isomer was the major product. ${ }^{28}$

Scheme 15

Treatment of the hydroxy vinyl phosphine oxides $\mathbf{2 8}$ and $\mathbf{2 5}$ with the nucleophilic epoxidation reagent lithium tert-butyl hydroperoxide gave the epoxides $\mathbf{5 0}$ and $\mathbf{5 1}$ respectively (Scheme

16). The epoxidation of $\mathbf{2 5}$ was not very stereoselective. The conformationally-locked allylic alcohol $\mathbf{2 8}$ was, however, epoxidised with high diastereoselectivity; by analogy with similar reactions of vinyl sulfones, the transformation is thought to be syn selective. ${ }^{29}$
Asymmetric addition of Davies's chiral lithium amide to prochiral vinyl phosphine oxides
We have studied the nucleophilic addition of a chiral nucleophile, Davies's lithium amide 54, to prochiral vinyl phosphine oxides (Strategy B, Scheme 1). The lithium amide 54 has previously been added with high diastereoselectivity to α, β unsaturated Weinreb amides (which can be transformed into aldehydes and ketones) and α, β-unsaturated esters. ${ }^{30,31}$ Lithium amide 54 has not, however, been added successfully to other unsaturated electrophiles; for example, no addition products were isolated when 54 was added even to non-enolisable ketones such as chalcone. ${ }^{31}$

Treatment of the vinyl phosphine oxides $9 \mathbf{9 a - c}$ with the lithium amide ${ }^{32} 54$ in the presence of chlorotrimethylsilane ${ }^{23}$ gave mixtures of the α-silyl phosphine oxides 52 (as single diastereomers) and α-silyl vinyl phosphine oxides 55. ${ }^{33}$ The α-silyl phosphine oxides $\mathbf{5 2 a}$-c were protodesilylated by treatment of the crude reaction mixture with tetra- n-butylammonium fluoride in THF to give the β-amino phosphine oxides as single diastereomers (Scheme 17 and Table 5). The

reaction appears to be limited to aryl-substituted vinyl phosphine oxides such as $9 \mathbf{9 a - c}$ (entries 1-3, Table 5); $9 \mathrm{~d}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}\right.$; entry 4) was recovered unchanged after being subjected to the same reaction conditions.

Table 5 Addition of the lithium amide 54 to prochiral vinyl phosphine oxides 9

Entry	Starting material	R	Product	$\text { Yield }^{a}$ (\%)	Diastereomeric ratio ${ }^{b}$
1	9a	Ph	53a	65	98:2
2	9b	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	53b	76	>99:1
3	9c	2-Furyl	53c	34	>99:1
4	9d	${ }^{\text {i }} \mathrm{Pr}$	-	0^{c}	-
${ }^{a}$ Yield of purified amine. ${ }^{\text {b }}$ By ${ }^{1} \mathrm{H}$ NMR. ${ }^{\text {c }} 9 \mathrm{~d}$ was recovered.					

The β-amino phosphine oxide 53a was converted into the amide 56a by hydrogenolytic cleavage of the benzyl groups and acylation with benzoyl chloride (Scheme 18). Similar (racemic) amides have been used as intermediates in the synthesis of allylic amides. ${ }^{2}$

We showed that the amine 57 (synthesised by hydrogenolysis of the β-amino phosphine oxide 53b) had $>98 \%$ ee (Scheme 19). Crucially, the amide syn-58 obtained from coupling the homochiral amine 57 with (S)-mandelic acid [(S)-59] could clearly be distinguished from one of the amides (anti-58) obtained when $\mathbf{5 7}$ was coupled with racemic mandelic acid (rac-59). The stereochemistry drawn, which is analogous to that observed with similar reactions of α, β-unsaturated esters, ${ }^{30}$ has been established by X-ray crystallographic analysis of the benzamide 56b. ${ }^{34}$

Proposed mechanism of the addition of Davies's lithium amide to prochiral vinyl phosphine oxides

Our proposed mechanism for the reaction between Davies's lithium amide 54 and vinyl phosphine oxides 9 (Scheme 17 and Table 5) is shown in Scheme 20. We believe that the addition of 54 to phosphine oxides 9 is reversible and that the equilibrium lies towards the starting materials.§ The chlorotrimethylsilane internal trapping agent $\boldsymbol{\|}$ removes material from this equilibrium process by reacting with the lithiated phosphine oxide $\mathbf{6 0}$. This model has been proposed on the basis of three pieces of evidence.
(1) In the absence of the chlorotrimethylsilane trap, no reaction was observed between Davies's lithium amide 54 and the vinyl phosphine oxide 53a $(\mathrm{R}=\mathrm{Ph})$; starting materials were recovered in $c a .90 \%$ yield.
(2) The lithiated phosphine oxide $\mathbf{6 0 b}\left(\mathrm{R}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4^{-}}\right)$, generated by treatment of $\mathbf{5 3 b}$ with butyllithium at $-78^{\circ} \mathrm{C}$, decomposed to give the vinyl phosphine oxide $9 \mathbf{b}$ and the amine derived from protonation of 54.
(3) The α-silyl phosphine oxide $\mathbf{5 5}$ is not an intermediate in the reaction $\mathbf{9}+\mathbf{5 4} \rightarrow \mathbf{5 2}$; $\mathbf{5 5}$ does not react with the lithium amide 54 under our usual reaction conditions.

Davies has proposed a model which explains the high stereoselectivity observed in the conjugate additions of the lithium amide 54 to α, β-unsaturated esters. ${ }^{37}$ In an analogous manner, we propose that the lithium amide $\mathbf{5 4}$ approaches the vinyl phosphine oxides 9 in the "butterfly"-like conformation shown in Fig. 3. Under this scenario, nucleophilic attack of the lithium

[^1]

Scheme 19

Scheme 20
amide 54 on the carbon-carbon double bond, with concomitant formation of the $\mathrm{P}-\mathrm{C}-\mathrm{O}-\mathrm{Li}$ ring of lithiated phosphine oxides, ${ }^{38}$ leads to the stereochemistry observed in our reactions.

Abstract

Summary In this paper, we have reported two strategies for controlling the stereochemistry of β-functionalised phosphine oxides by adding nucleophiles to vinyl phosphine oxides. β-Substituted phosphine oxides have already been established as key intermediates in the synthesis of allylically functionalised compounds with control over double bond geometry. ${ }^{1}$ To start with, we studied the addition of hydrogen, carbon and heteroatomic nucleophiles to vinyl phosphine oxides with a chiral

Fig. 3
centre γ to phosphorus. Then, the diastereoselective addition of Davies's chiral lithium amide to prochiral vinyl phosphine oxides in the presence of chlorotrimethylsilane was described. The products of this reaction, β-amino phosphine oxides are potential precursors of ligands for asymmetric catalysis ${ }^{39}$ and chiral auxiliaries. ${ }^{40}$ The use of internal traps in asymmetric conjugate additions may allow Davies's reaction to be extended to other electrophiles which do not react with lithium amide 54 alone. ${ }^{31}$

Experimental

All solvents were distilled before use. THF and $\mathrm{Et}_{2} \mathrm{O}$ were freshly distilled from lithium aluminium hydride whilst $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene were freshly distilled from calcium hydride. Triphenylmethane was used as indicator for THF. $N, N, N^{\prime}, N^{\prime}$ Tetramethylethylenediamine was dried by stirring over and distilling from calcium hydride and was then stored over activated $4 \AA$ A molecular sieves. n-Butyllithium was titrated against diphenylacetic acid before use. All non-aqueous reactions were carried out under argon using oven-dried glassware.

Flash column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh) according to the method of Still, Kahn and Mitra. ${ }^{41}$ Thin layer chromatography was carried out on commercially available pre-coated plates (Merck silica Kieselgel $60 \mathrm{~F}_{254}$). Proton and carbon NMR spectra were recorded on Bruker WM 200, WM 250, WM 400 or AMX 500 Fourier transform spectrometers using an internal deuterium lock. Chemical shifts are quoted in ppm downfield of tetramethylsilane and values of coupling constants (J) are given in Hz. The symbol * after the proton NMR chemical shift indicates that the signal disappears after a $\mathrm{D}_{2} \mathrm{O}$ "shake". Carbon NMR spectra were recorded with broad band proton decoupling and attached proton test. The symbols ${ }^{+}$and ${ }^{-}$after the carbon NMR chemical shift indicate odd and even numbers of attached protons respectively.
Melting points were measured on a Reichart hot stage microscope or a Buchi 510 melting point apparatus and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 1600 (FT-IR) spectrophotometer. Mass spectra were recorded on a Kratos double-beam mass spectrometer using a DS503 data system for high resolution analysis. Microanalyses were carried out by the staff of the University Chemical Laboratory using Carlo Erba 1106 or Perkin-Elmer 240 automatic analysers. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter (using the sodium D line; 589 nm) and $[a]_{\mathrm{D}}^{20}$ are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1} .(R)$-Pirkle's reagent is (R)-(-)-2,2,2-trifluoro-1-(9-anthryl)ethanol.

2-Diphenylphosphinoyl-1-(p-methoxyphenyl)ethanol 11b

n-Butyllithium ($1.3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexanes, $84.6 \mathrm{~cm}^{3}$, 0.11 mol) was added to a stirred solution of methyldiphenylphosphine oxide ($21.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) in 400 ml dry THF at $-78^{\circ} \mathrm{C}$. After stirring for $15 \mathrm{~min}, p$-anisaldehyde $\left(14.6 \mathrm{~cm}^{3}, 0.12 \mathrm{~mol}\right.$ was added and the reaction was stirred for a further 30 min at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm up to room temperature, stirred for 1 h , quenched with saturated aqueous ammonium chloride solution ($200 \mathrm{~cm}^{3}$), extracted with dichloromethane $\left(3 \times 200 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield a crude product, which was
purified by flash chromatography (eluting with $2: 1 \mathrm{EtOAc}-$ hexane) or by recrystallization from EtOAc to give the β hydroxyphosphine oxide 11b ($34.4 \mathrm{~g}, 99 \%$) as white needles, mp $133{ }^{\circ} \mathrm{C} ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.29 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1173(\mathrm{P}=\mathrm{O}), 1438$ $(\mathrm{P}-\mathrm{Ph})$ and $3756(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.41-7.82(10 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 7.25(2 \mathrm{H}, \mathrm{d}, J 8.6$, MeOPh $), 6.82(2 \mathrm{H}, \mathrm{d}, J 8.6$, $\mathrm{MeOPh}), 5.11(1 \mathrm{H}, \mathrm{t}, J 9.5, \mathrm{CHOH}), 4.92(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.76$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.75\left(1 \mathrm{H}, \mathrm{td}, J 10.9\right.$ and $\left.15.0, \mathrm{CH}_{2}\right)$ and 2.55 $\left(1 \mathrm{H}\right.$, ddd, J 2.1, 6.9 and $\left.15.0, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 159.1^{-}(C-OMe), 136.1^{-}(d, J 10.4, ipso-Ph), 126.8-133.7 (m, $\mathrm{Ph}, \mathrm{MeOPh}), 113.9^{+}(\mathrm{MeOPh}), 68.9^{+}(\mathrm{CHOH}), 55.3^{+}(\mathrm{OMe})$ and $39.2^{-}\left(\mathrm{d}, J 67.9, \mathrm{CH}_{2}\right) ; m / z(\mathrm{EI}) 352\left(4 \%, \mathrm{M}^{+}\right), 334$ (20, $\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 215\left(79, \mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{3}\right)$ and $201\left(100, \mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{H}\right)$ (Found: M^{+}, 352.1222. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}$ requires $M, 352.1228$) (Found: C, 71.3; H, 6.0; P, 8.7. $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}$ requires C, 71.6; H, $6.0 ; \mathrm{P}, 8.8 \%$).

1-Diphenylphosphinoyl-3-methylbutan-2-ol 11d

By the general method described above, methyldiphenylphosphine oxide ($21.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) and 2-methylpropanal gave the β-hydroxyphosphine oxide ${ }^{42} \mathbf{1 1 d}(25.3 \mathrm{~g}, 88 \%)$ as a colourless oil, R_{F} (EtOAc) 0.38; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1173$ ($\mathrm{P}=\mathrm{O}$), 1437 $(\mathrm{P}-\mathrm{Ph})$ and $3761(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.65-7.80(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 7.40-7.57\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.42(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.82$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.32-2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.75(1 \mathrm{H}, \mathrm{dq}, J 6.8$, 12.1, $\mathrm{C} H \mathrm{Me}_{2}$) and $0.89(6 \mathrm{H}, \mathrm{dd}, J 1.6,6.8, \mathrm{Me}) ; m / z$ (EI) 288 $\left(13 \%, \mathrm{M}^{+}\right), 270\left(34, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 215\left(76, \mathrm{Ph}_{2} \mathrm{POCH}_{3}\right)$ and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$).

2-Diphenylphosphinoyl-1-furan-2'-ylethanol 11c

By the general method described above, methyldiphenylphosphine oxide ($21.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) gave the β-hydroxyphosphine oxide $11 \mathrm{c}(27.4 \mathrm{~g}, 88 \%)$ as white needles, $\mathrm{mp} 151^{\circ} \mathrm{C} ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.46$, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1175(\mathrm{P}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph})$ and $3517(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.66-7.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 7.42-7.57$ (6 $\left.\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 7.25\left(1 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{H}\right), 6.24\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right)$, $5.19(1 \mathrm{H}, \mathrm{dt}, J 2.3$ and $10.4, \mathrm{CHOH}), 4.96(1 \mathrm{H}, \mathrm{d}, J 2.3, \mathrm{OH})$, $2.92\left(1 \mathrm{H}\right.$, ddd, $J 10.1,10.9$ and $\left.15.0, \mathrm{CH}_{2}\right)$ and $2.73(1 \mathrm{H}$, ddd, J 2.6, 7.9 and $\left.15.0, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.4^{-}(\mathrm{d}$, $J 14.1, \mathrm{C}^{-1}$), 141.9 ${ }^{-}$, $128.7-133.4$ (m, Ph, C-4'), $110.3^{+}, 106.2^{+}$, $63.6^{+}(\mathrm{d}, J 3.9, \mathrm{CHOH})$ and $35.3^{-}\left(\mathrm{d}, J 69.7, \mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 312$ $\left(11 \%, \mathrm{M}^{+}\right), 215\left(53, \mathrm{Ph}_{2} \mathrm{POCH}_{3}\right)$ and $202\left(100, \mathrm{Ph}_{2} \mathrm{POH}\right)$ (Found: M^{+}, 312.0902. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{P}$ requires $M, 312.0915$) (Found: C, 68.3; H, 5.5; P, 9.3. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{P}$ requires C, 68.2; H, 5.5; P, 9.9\%).

(E)-1-Diphenylphosphinoyl-3-methylbutene 9d

n-Butyllithium ($1.3 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexanes; 0.85 ml , 1.1 mmol) and methanesulfonyl chloride ($75 \mu \mathrm{l}, 1.2 \mathrm{mmol}$) were added to a stirred solution of the β-hydroxyphosphine oxide $\mathbf{1 1 d}(288 \mathrm{mg}, 1.00 \mathrm{mmol})$ in 5 ml THF at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at $-10^{\circ} \mathrm{C}, n$-butyllithium (1.3 mol dm^{-3} solution in hexanes; $0.77 \mathrm{ml}, 1.00 \mathrm{mmol}$) was added and the mixture was stirred for a further 24 h at $-10^{\circ} \mathrm{C}$. The reaction was quenched by addition of aqueous hydrochloric acid solution ($3.0 \mathrm{~mol} \mathrm{dm}^{-3}, 35 \mathrm{~cm}^{-3}$), extracted with dichloromethane $\left(3 \times 30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield a crude product which was recrystallised from EtOAc-hexane 1:1 to give the vinyl phosphine oxide ${ }^{43} \mathbf{9 d}$ (151 $\mathrm{mg}, 56 \%$) as colourless needles, $\mathrm{mp} 141-143{ }^{\circ} \mathrm{C} ; R_{\mathrm{F}}$ (EtOAc) 0.33; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1176(\mathrm{P}=\mathrm{O})$ and $1441(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.65-7.72\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 7.40-7.55(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 6.73\left(1 \mathrm{H}\right.$, ddd, $J 6.1,17.1$ and 19.9, CHCHMe_{2}), 6.15 $\left(1 \mathrm{H}\right.$, ddd, $J 1.5,17.1$ and $\left.24.4, \mathrm{Ph}_{2} \mathrm{POCH}\right), 2.53(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH} \mathrm{Me}_{2}$) and $1.08(6 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me}) ; m / z$ (EI) $270\left(62 \%, \mathrm{M}^{+}\right)$, 227 ($47, \mathrm{M}-{ }^{\mathrm{i}} \mathrm{Pr}$), $202\left(100, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and $77\left(73, \mathrm{C}_{7} \mathrm{H}_{7}\right)$.

(E)-1-Diphenylphosphinoyl-2-(\boldsymbol{p}-methoxyphenyl)ethene 9b

Pyridine ($105 \mu \mathrm{l}, 1.3 \mathrm{mmol}$) and chlorotrimethylsilane ($140 \mu \mathrm{l}$,
1.1 mmol) were added to a stirred solution of the β-hydroxyphosphine oxide 11b ($352 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$, the solvent was removed by evaporation under reduced pressure, water $\left(5 \mathrm{~cm}^{3}\right)$ was added, and the reaction mixture was extracted with dichloromethane $\left(3 \times 30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield a crude product, which was dissolved in dry THF ($3 \mathrm{~cm}^{3}$), and added slowly to a stirred suspension of sodium hydride (60% suspension in mineral oil, $44 \mathrm{mg}, 1.1 \mathrm{mmol})$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ at $70^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at $70^{\circ} \mathrm{C}$, quenched by addition of ice, extracted with dichloromethane $\left(3 \times 30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give the crude product, which was purified by flash chromatography (EtOAc-hexane $2: 1$) and by recrystallization (EtOAc-hexane 1:1) to give the vinyl phosphine oxide (330 mg , 99%) as colourless needles, $\mathrm{mp} 174^{\circ} \mathrm{C} ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.30$; $v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 1176(\mathrm{P}=\mathrm{O})$ and $1439(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) $7.71-7.78$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $7.40-7.55\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$, Ar and $\mathrm{POCH}=\mathrm{C} H), 6.88(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{Ar}), 6.65(1 \mathrm{H}, \mathrm{dd}$, $J 17.3$ and $22.3, \mathrm{POCH})$ and $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}) 161.2^{-}(C-OMe), 147^{-}(d, J 4, ipso-PhOMe), 127.9133.8 (m, Ph, PhOMe, CHPhOMe), 116.2^{+}(d, J 105.9, $\mathrm{Ph}_{2}{ }^{-}$ $\mathrm{POCH}), 114.2^{+}(\mathrm{CHPhOMe})$ and 55.4^{+}(OMe) m / z (EI) 334 $\left(93 \%, \mathrm{M}^{+}\right), 202\left(100, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and $77\left(37, \mathrm{C}_{7} \mathrm{H}_{7}\right)$ (Found: M^{+}, 334.1117. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ requires $M, 334.1122$) (Found: C, $75.4 ; \mathrm{H}$, 5.75; P, 9.2. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ requires $\left.\mathrm{C}, 75.4 ; \mathrm{H}, 5.7 ; \mathrm{P}, 9.3 \%\right)$.

(E)-1-Diphenylphosphinoyl-2-furan-2'-ylethene 9c

By the general method described above, the β-hydroxy phosphine oxide 11c ($312 \mathrm{mg}, 1.00 \mathrm{mmol}$) gave the vinyl phosphine oxide ($130 \mathrm{mg}, 45 \%$) as colourless needles, $\mathrm{mp} 151^{\circ} \mathrm{C} ; R_{\mathrm{F}}$ (EtOAc) $0.38 ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1174(\mathrm{P}=\mathrm{O})$ and $1438(\mathrm{P}-\mathrm{Ph})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.68-7.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 7.41-7.52$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and $4^{\prime}-\mathrm{H}$), $7.26(1 \mathrm{H}, \mathrm{dd}, J 17.1$ and 19.4 , CHAr), $6.70(1 \mathrm{H}, \mathrm{d}, J 17.1$ and 23.0, POCH), $6.50(1 \mathrm{H}, \mathrm{d}$, $\left.J 3.4,2^{\prime}-\mathrm{H}\right)$ and $6.42\left(1 \mathrm{H}\right.$, dd, $J 1.8$ and $\left.3.4,3^{\prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 151.5^{-}(d, $\left.J 20, \mathrm{C}-1^{\prime}\right), 144.4^{-}, 128.5-134.0(\mathrm{~m}, \mathrm{Ph}$, C-4 and CHAr), $116.6^{+}\left(\mathrm{d}, J\right.$ 105.5, $\left.\mathrm{Ph}_{2} \mathrm{POCH}\right), 113.7^{+}$and 112.2^{+}(C-2' and C-3'); m / z (EI) $294\left(100 \%, \mathrm{M}^{+}\right)$and 202 (64, $\mathrm{Ph}_{2} \mathrm{POH}$) (Found: M^{+}, 294.0808. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{P}$ requires M, 294.0809) (Found: C, 73.5; H, 5.15; P, 10.5. $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{P}$ requires C, 73.5; H, 5.1; P, 10.5\%).

(R)-(E)-4-Diphenylphosphinoylbut-3-en-2-ol 18a

By the method of Sharpless et al, ${ }^{14}$ triethylamine $(1.15 \mathrm{~g}, 10.6$ mmol) and thionyl chloride ($0.63 \mathrm{~g}, 5.35 \mathrm{mmol}$) were added dropwise to a stirred solution of $(2 S, 3 R)$-1-diphenyl-phosphinoylbutane-2,3-diol $16 \mathrm{a}(1.35 \mathrm{~g}, 4.66 \mathrm{mmol})$ in dry dichloromethane ($25 \mathrm{~cm}^{3}$) at $0{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was evaporated under reduced pressure and dry dichloromethane ($25 \mathrm{~cm}^{3}$) added. DBU ($3.54 \mathrm{~g}, 23.3 \mathrm{mmol}$) was added dropwise to this solution at $0^{\circ} \mathrm{C}$. After 1 h , dichloromethane ($50 \mathrm{~cm}^{3}$) was added, the reaction mixture washed with hydrochloric acid ($2 \times 50 \mathrm{~cm}^{3}$) and brine ($50 \mathrm{~cm}^{3}$), and evaporated under reduced pressure to give a crude product, which was purified by flash chromatography, eluting with 5% methanol in EtOAc, to yield the vinyl phosphine oxide 18a (733 $\mathrm{mg}, 58 \%$) as an oil, $R_{\mathrm{f}} 0.44$ (10% methanol in EtOAc); $[a]_{\mathrm{D}}^{20}$ -10.8 (c 1.14 in CHCl_{3}) (Found: $\mathrm{M}^{+}, 272.0966 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{PO}_{2}$ requires $M, 272.0966)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3332(\mathrm{OH}), 1624$ ($\mathrm{C}=\mathrm{C}$), $1438(\mathrm{P}-\mathrm{Ph})$ and $1169(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.7-$ $7.35\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.74\left(1 \mathrm{H}\right.$, ddd, $J 4.7,17.0$ and ${ }^{3} J_{\mathrm{PH}} 18.9$, $\mathrm{PCH}=\mathrm{CH}), 6.51\left(1 \mathrm{H}\right.$, ddd, $J 1.5,17.0$ and $\left.{ }^{2} J_{\mathrm{PH}} 24.4, \mathrm{PCH}\right)$, $4.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.08(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$ and $1.29(3 \mathrm{H}, \mathrm{d}$, $J 6.7, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.8^{+}(\mathrm{PCH}=\mathrm{CH}), 133-128$ $\left(\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 119.0^{+}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 102.4, \mathrm{PCH}\right), 67.9^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 16.6\right.$, CHOH) and $21.0^{+}(\mathrm{Me})$; $m / z 272.1\left(10 \%, \mathrm{M}^{+}\right)$, 229.1 (100) and $202.1\left(95, \mathrm{Ph}_{2} \mathrm{POH}\right)$. Integration of the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR
spectrum of the Mosher's ester of this material showed it to have 46% ee.

(R)-(E)-1-Diphenylphosphinoylpent-1-en-3-ol 18b

By the general method described above, ($2 S, 3 R$)-1-diphenylphosphinoylpentane-2,3-diol syn-16b ($635 \mathrm{mg}, 2.22$ mmol) gave a crude product, which was purified by flash chromatography, eluting with 8% methanol in EtOAc, to yield the vinyl phosphine oxide $\mathbf{1 8 b}(414 \mathrm{mg}, 65 \%)$ as an oil, $R_{\mathrm{f}} 0.34(10 \%$ methanol in EtOAc); $[a]_{\mathrm{D}}^{20}-19.9$ (c 1.41 in CHCl_{3}) (Found: $\mathrm{M}^{+}-\mathrm{Et}$, 257.0743. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{PO}_{2}$ requires $M-\mathrm{Et}$, 257.0731); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3339(\mathrm{OH}), 1621(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1172(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.7-7.35\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, $6.74\left(1 \mathrm{H}, \mathrm{ddd}, J 3.9,17.0\right.$ and $\left.^{3} J_{\mathrm{PH}} 19.9, \mathrm{PCH}=\mathrm{C} H\right), 6.54(1 \mathrm{H}$, ddd, $J 1.6,17.0$ and $\left.^{2} J_{\mathrm{PH}} 24.7, \mathrm{PCH}\right), 4.26(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$, $3.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.58(2 \mathrm{H}, \mathrm{m})$ and $0.93(3 \mathrm{H}, \mathrm{d}, J 7.4, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.5^{+}(\mathrm{PCH}=C \mathrm{H}), 133-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, $120.1^{+}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 102.0, \mathrm{PCH}\right), 73.1^{+}$(d, $\left.{ }^{3} J_{\mathrm{PC}} 16.1, \mathrm{CHOH}\right), 29.5^{-}$ $\left(\mathrm{CH}_{2} \mathrm{Me}\right)$ and $9.7^{+}(\mathrm{Me}) ; m / z 257.1\left(30 \%, \mathrm{M}^{+}-\mathrm{Et}\right), 229.1$ (100) and $202.1\left(\mathrm{Ph}_{2} \mathrm{POH}\right)$. Integration of the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the Mosher's ester of this material showed it to have 76% ee.

(R)-(\boldsymbol{E})-1-Diphenylphosphinoylpent-1-en-3-ol 18b

By the general method described above, ($2 R, 3 R$)-1-diphenyl-phosphinoylpentane-2,3-diol anti-16b ($95 \mathrm{mg}, 0.31 \mathrm{mmol}$) gave a crude product, which was purified by flash chromatography, eluting with 8% methanol in EtOAc, to yield the vinyl phosphine oxide 18b ($62 \mathrm{mg}, 78 \%$) as an oil, $[a]_{\mathrm{D}}^{20}-1.5$ (c 0.69 in CHCl_{3}), spectroscopically identical to that obtained previously. Integration of the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the Mosher's ester of this material showed it to have 22% ee.

(R)-(E)-1-Diphenylphosphinoylhept-1-en-3-ol 18c

By the general method described above, ($2 S, 3 R$)-1-diphenyl-phosphinoylheptane-2,3-diol $\mathbf{1 6 c}(3.63 \mathrm{~g}, 10.9 \mathrm{mmol})$ gave a crude product, which was purified by flash chromatography, eluting with 2% methanol in EtOAc, to yield the vinyl phosphine oxide 18c ($3.48 \mathrm{~g}, 99 \%$) as prisms, $\mathrm{mp} 94-95^{\circ} \mathrm{C}$ (from EtOAchexane); $R_{\mathrm{f}} 0.28$ (EtOAc); $[a]_{\mathrm{D}}^{20}-22.0\left(c 0.44\right.$ in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: C, 72.6; H, 7.35; P, 9.9\%; M ${ }^{+}$, 314.1435. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{PO}_{2}$ requires C, 72.6; H, 7.35; P, 9.9\%; M, 314.1436); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3333(\mathrm{OH}), 1618(\mathrm{C}=\mathrm{C}), 1437(\mathrm{P}-\mathrm{Ph})$ and $1173(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.75(1 \mathrm{H}, \mathrm{ddd}$, $J 3.9,17.0$ and $\left.{ }^{3} J_{\mathrm{PH}} 19.8, \mathrm{PCH}=\mathrm{C} H\right), 6.52(1 \mathrm{H}$, ddd, $J 1.3,17.0$ and $\left.{ }^{2} J_{\mathrm{PH}} 24.6, \mathrm{PCH}\right), 4.31(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CHOH}), 3.05(1 \mathrm{H}$, br s, $\mathrm{OH}), 1.6-1.3(6 \mathrm{H}, \mathrm{m})$ and $0.86(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 154.5^{+}(\mathrm{PCH}=\mathrm{CH}), 134-127\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 119.9^{+}(\mathrm{d}$, $\left.{ }^{1} J_{\mathrm{PC}} 102, \mathrm{PCH}\right), 72.0^{+}$(d, $\left.{ }^{3} J_{\mathrm{PC}} 15, \mathrm{CHOH}\right), 36.3^{-}, 33.1^{-}, 22.5^{-}$, and $14.0^{+}(\mathrm{Me}) ; m / z 314.1\left(10 \% \mathrm{M}^{+}\right)$, 245.1 (90), 229.1 (100) and 202.1 ($100, \mathrm{Ph}_{2} \mathrm{POH}$).

(S)-(E)-3-Diphenylphosphinoyl-1-phenylprop-2-en-1-ol 18d

By the general method described above, $(1 S, 2 S)$-3-diphenyl-phosphinoyl-1-phenylpropane-1,2-diol 16d ($1.37 \mathrm{~g}, 4.1 \mathrm{mmol}$) and $\operatorname{DBU}(1.26 \mathrm{~g}, 8.2 \mathrm{mmol})$ gave a crude product, which was purified by flash chromatography, eluting with 2% methanol in EtOAc, to yield the vinyl phosphine oxide $\mathbf{1 8 d}(1.16 \mathrm{~g}, 89 \%)$ as an oil, $R_{\mathrm{f}} 0.28$ (EtOAc); $[a]_{\mathrm{D}}^{20}-73.4$ (c 0.46 in $\mathrm{CHCl}_{3} ; 86 \% \mathrm{ee}$) (Found: M^{+}, 334.1146. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{PO}_{2}$ requires M, 334.1122); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3300(\mathrm{OH}), 1619(\mathrm{C}=\mathrm{C}), 1437(\mathrm{P}-\mathrm{Ph})$ and $1170(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.6-7.2\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{Ph}), 6.82\left(1 \mathrm{H}\right.$, ddd, $J 3.9,16.9$ and ${ }^{3} J_{\mathrm{PH}} 19.5$, PCH=C H), 6.65 $\left(1 \mathrm{H}\right.$, ddd, ${ }^{4} J_{\mathrm{HH}} 1.5, J 16.9$ and $\left.{ }^{2} J_{\mathrm{PH}} 24.1, \mathrm{PCH}\right), 5.29(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHOH})$ and $4.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $153.2^{+}(\mathrm{PCH}=\mathrm{CH}), 141.3^{-}$(ipso-Ph), 133-126 (m, $\mathrm{Ph}_{2} \mathrm{PO}$ and remaining Ph $), 119.9^{+}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 101, \mathrm{PCH}\right)$ and $74.2^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 17\right.$,
$\mathrm{CHOH}) ; m / z 334.1\left(10 \%, \mathrm{M}^{+}\right)$, 306.1 (100) and 215.1 (100 , $\left.\mathrm{Ph}_{2} \mathrm{P}(\mathrm{OH}) \mathrm{CH}\right)$.

(R)-(E)-1-Diphenylphosphinoyl-2-methylhept-1-en-3-ol 18e

By the general method described above, ($2 S, 3 R$)-1-diphenyl-phosphinoyl-2-methylheptane-2,3-diol 16e $(812 \mathrm{mg}, \quad 2.35$ mmol) gave a crude product, which was purified by flash chromatography, eluting with 2% methanol in EtOAc, to yield the vinyl phosphine oxide 18e ($590 \mathrm{mg}, 81 \%, 83: 17 E: Z$ mixture) as an oil, $R_{\mathrm{f}} 0.50\left(10 \%\right.$ methanol in EtOAc); $[a]_{\mathrm{D}}^{20}-1.9$ (c 0.76 in CHCl_{3}) (Found: M^{+}, 328.1595. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{PO}_{2}$ requires M, 328.1592); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3308(\mathrm{OH}), 1624(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-$ $\mathrm{Ph})$ and $1170(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.75-7.3(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 6.28\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 25.8, \mathrm{PCH}^{E}\right), 6.25\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 25.1\right.$, $\left.\mathrm{PCH}^{Z}\right), 4.41(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}^{E+Z}\right), 1.99$ $\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CMe}^{Z}\right), 1.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CMe}^{E}\right), 1.7-1.1(6 \mathrm{H}, \mathrm{m})$, $0.89\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}^{E}\right)$ and $0.79\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{Me}^{\mathrm{Z}}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.4^{-}\left(\mathrm{PCH}=C^{Z}\right), 166.4^{-}\left(\mathrm{PCH}=C^{E}\right), 135-128$ $\left(\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 116.0^{+}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 102.4, \mathrm{PCH}^{Z}\right), 114.3^{+}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 104.6\right.$, $\left.\mathrm{PCH}^{E}\right), 76.2^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 15.7, \mathrm{CHOH}^{E}\right), 73.2^{+}\left(\mathrm{CHOH}^{Z}\right), 35.5^{-}$ $(Z), 34.8^{-}(E), 28.2^{-}(Z), 27.8^{-}(E), 22.7^{-}(E), 22.5^{-}(Z), 14.1^{+}$ $\left(\mathrm{Me}^{E}\right)$ and $14.0^{+}\left(\mathrm{Me}^{Z}\right) ; m / z 328.2\left(25 \%, \mathrm{M}^{+}\right)$, 310.2 (80 , $\left.\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 271.1\left(90, \mathrm{M}^{+}-\mathrm{Bu}\right)$ and $201.1\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$. Integration of the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the Mosher's ester of this material showed it to have 74% ee.

(R)-(E)-1-Cyclohexyl-3-diphenylphosphinoyl-2-methylprop-2-en-1-ol 18f

By the general method described above, $(2 R, 3 S)$-1-cyclohexyl-3-diphenylphosphinoyl-2-methylpropane-1,2-diol 16 f (1.41 g , 3.79 mmol) gave a crude product, which was purified by flash chromatography, eluting with 5% methanol in EtOAc, to yield the vinyl phosphine oxide $\mathbf{1 8 f}(1.21 \mathrm{mg}, 91 \%, 88: 12 \mathrm{E}: Z \mathrm{Z}$ mixture) as an oil, $R_{\mathrm{f}} 0.32\left(5 \%\right.$ methanol in EtOAc); $[a]_{\mathrm{D}}^{20}-7.4$ (c 3.54 in CHCl_{3}) (Found: C, $74.1 ; \mathrm{H}, 7.60 ;$ P, 8.7\%; $\mathrm{M}^{+}, 354.1750$. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{PO}_{2}$ requires C, $74.5 ; \mathrm{H}, 7.70 ; \mathrm{P}, 8.7 \% ; M, 354.1748$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3331(\mathrm{OH}), 1621(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1171(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.6(4 \mathrm{H}, \mathrm{m}), 7.5-7.3$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $6.22\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{PH}} 25.7, \mathrm{PCH}\right), 3.88(1 \mathrm{H}, \mathrm{d}$, $J 3.9, \mathrm{CHOH}), 3.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $2.0-1.0(14 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.5^{-}\left(\mathrm{PCH}=C^{Z}\right), 135-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, 116.3^{+}(d, ${ }^{1} J_{\mathrm{PC}} 103.7, \mathrm{PCH}$), 81.3^{+}(d, ${ }^{3} J_{\mathrm{PC}} 15.9, \mathrm{CHOH}$), 40.8^{+}, $30.2^{-}, 27.0^{-}, 26.3^{-}, 26.2^{-}, 25.9^{-}$and $16.7^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 7.6, \mathrm{Me}\right) ; \mathrm{m} / \mathrm{z}$ $354.2\left(50 \%, \mathrm{MH}^{+}\right)$and $202.1\left(100, \mathrm{Ph}_{2} \mathrm{POH}\right)$. Integration of the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the Mosher's ester of this material showed it to have 84% ee.

(2R,3S)-1-Diphenylphosphinoyl-2,3-bis(trimethylsilyloxy)butane

 21Triethylamine ($72 \mu 1,0.53 \mathrm{mmol}$) and chlorotrimethylsilane $(0.10,0.38 \mathrm{mmol})$ were added dropwise to a stirred solution of ($2 R, 3 S$)-1-diphenylphosphinoylbutane-2,3-diol 16a (156 mg , $0.53 \mathrm{mmol})$ in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$. The reaction was stirred for 1 h under argon and was quenched with saturated aqueous ammonium chloride solution ($5 \mathrm{~cm}^{3}$). The layers were separated and were extracted with dichloromethane (3×5 cm^{3}), washed with brine $\left(5 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and were evaporated under reduced pressure to give a crude product. Flash chromatography, eluting with $2: 1 \mathrm{EtOAc}$-hexane, gave the disilyl ether 21 ($147 \mathrm{mg}, 63 \%$) as needles, $\mathrm{mp} 85-87^{\circ} \mathrm{C}$ (from hexane-EtOAc); $R_{\mathrm{f}} 0.61$ (EtOAc); $[a]_{\mathrm{D}}^{20}-3.7$ (c 1.0 in CHCl_{3}) (Found: M^{+}, 434.1861. $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{PO}_{3} \mathrm{Si}_{2}$ requires M, 434.1870); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1437(\mathrm{P}-\mathrm{Ph})$ and $1179(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) 7.7-7.3 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $4.2(1 \mathrm{H}$, dddd, $J 3,5,8$ and $\left.{ }^{3} J_{\mathrm{PH}} 12, \mathrm{PCH}_{2} \mathrm{C} H\right), 3.8\left(1 \mathrm{H}\right.$, ddq, ${ }^{4} J_{\mathrm{PH}} 2, J 5$ and 6 , MeCHOSiMe 3), $2.65\left(1 \mathrm{H}\right.$, ddd, $J 3,{ }^{2} J_{\mathrm{PH}} 13$ and ${ }^{2} J_{\mathrm{HH}} 15$, $\left.\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.4\left(1 \mathrm{H}\right.$, ddd, $J 8,{ }^{2} J_{\mathrm{PH}} 9$ and $\left.{ }^{2} J_{\mathrm{HH}} 15, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.1$ $(3 \mathrm{H}, \mathrm{d}, J 6, \mathrm{Me}), 0.1\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$ and $-0.1\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$;
$\delta_{\mathrm{c}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 70.3-70.1(\mathrm{~m}$, $\left.2 \times \mathrm{COSiMe}_{3}\right), 30.3^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 73, \mathrm{PCH}_{2}\right), 16.5^{+}(\mathrm{Me}), 0.2^{+}$ $\left(\mathrm{SiMe}_{3}\right)$ and $0.1^{+}\left(\mathrm{SiMe}_{3}\right) ; m / z 434\left(15 \%, \mathrm{M}^{+}\right)$, 317.1 (100 , $\mathrm{M}-\mathrm{MeCHOSiMe} 3$) and $73.0\left(95, \mathrm{OSiMe}_{3}\right)$. Integration of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of this material in the presence of Pirkle's shift reagent showed it to have 18% ee.

(S)-(E)-4-Diphenylphosphinoylbut-3-en-2-yl trimethylsilyl ether 22

n-Butyllithium ($3.6 \mathrm{~cm}^{3}$ of a $1.35 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexanes, 4.8 mmol) was added to a stirred solution of diisopropylamine $(490 \mathrm{mg}, 4.8 \mathrm{mmol})$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. After 30 min , this solution was added by cannula to a stirred solution of ($2 R, 3 S$)-1-diphenylphosphinoyl-2,3-bis(trimethylsilyloxy)-
butane $21(1.0 \mathrm{~g}, 2.3 \mathrm{mmol})$ in dry THF $\left(15 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was quenched with water, extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with $2: 1$ EtOAc-hexane, to give the vinyl phosphine oxide 22 (575 mg , $73 \%, 98: 2 \mathrm{E}: Z$) as an oil, $R_{\mathrm{f}} 0.73$ (EtOAc); $[a]_{\mathrm{D}}^{20}+1.4$ (c 0.7 in $\mathrm{CHCl}_{3} ; 18 \%$ ee) (Found: $\mathrm{M}^{+}, 344.1345 . \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{PSi}$ requires $M, 344.1355)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1636(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1186(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.7-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, $6.75\left(1 \mathrm{H}\right.$, ddd, $J 3.0,16.5$ and $\left.^{3} J_{\mathrm{PH}} 20.0, \mathrm{PCH}=\mathrm{C} H\right), 6.45(1 \mathrm{H}$, ddd, $J 2.0,16.5$ and $\left.^{2} J_{\mathrm{PH}} 25.0, \mathrm{PCH}\right), 4.5(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}), 1.25$ $(3 \mathrm{H}, \mathrm{d}, J 7.0, \mathrm{Me})$ and $0.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $154.9^{+}(\mathrm{PCH}=\mathrm{CH}), 133-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 119.3^{+}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 102\right.$, $\mathrm{PCH}), 68.7^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 16, \mathrm{CHOSi}\right), 23.4^{+}(\mathrm{Me})$ and $0.0^{+}\left(\mathrm{SiMe}_{3}\right)$; $\mathrm{m} / \mathrm{z} 344.1\left(44 \%, \mathrm{M}^{+}\right), 229.1$ (100, M $\left.-\mathrm{MeCHOSiMe} \mathrm{CH}_{2}\right)$, $201.0\left(95, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $77(68, \mathrm{Ph})$.

(R)-(E)-4-Diphenylphosphinoyl-1-triisopropylsilyloxybut-3-en-2-ol 25

2,6-Lutidine $\left(0.29 \mathrm{~cm}^{3}, 1.60 \mathrm{mmol}\right)$ and triisopropylsilyl trifluoromethanesulfonate ($0.21 \mathrm{~cm}^{3}, 0.80 \mathrm{mmol}$) were added dropwise to a stirred solution of the alcohol $24(164.55 \mathrm{mg}, 0.57$ $\mathrm{mmol})$ in dry dichloromethane $\left(1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. After 2 h at $0^{\circ} \mathrm{C}$, the solution was allowed to warm to room temperature, and was stirred for a further 18 h . Water $\left(10 \mathrm{~cm}^{3}\right)$ and dichloromethane were added, the layers separated, and the aqueous layer extracted into dichloromethane $(\times 3)$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated under reduced pressure, and purifed by flash chromatography, eluting with 3:1 hexane-EtOAc and then EtOAc, to yield the silyl ether $25(99.5 \mathrm{mg}, 77 \%)$ as an oil, $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.42 ; v_{\max }\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1}$ $3550(\mathrm{OH}), 1435(\mathrm{PPh})$ and $1175(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) 7.7-7.4 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), 6.9-6.6 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$), $4.42(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.85\left(1 \mathrm{H}\right.$, dd, $J 9.8$ and $4.1, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}^{-}}$ $\mathrm{OSi}), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J 9.8\right.$ and $\left.6.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right), 3.7(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH})$ and 1.2-1.0 $\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{2} \mathrm{CH} \times 3\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $149.7^{+}\left({ }^{2} J_{\mathrm{PC}} 8.0, \mathrm{PC}=C \mathrm{H}\right), 132-128\left(\mathrm{Ph}_{2} \mathrm{PO}\right), 126.7^{+}\left({ }^{1} J_{\mathrm{PC}} 114\right.$, $\mathrm{PC}), 72.5^{+}\left({ }^{3} J_{\mathrm{PC}} 15.5, \mathrm{CHOH}\right), 66.3^{-}\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 17.9^{+}$ $\left(\mathrm{CHMe} e_{2} \times 3\right), 13.0^{+}\left({ }^{2} J_{\mathrm{PC}} 9.6, \mathrm{PCMe}\right)$ and $11.8^{+}\left(\mathrm{Me}_{2} \mathrm{CH} \times 3\right)$; $m / z 401$ ($100 \%, \mathrm{M}-\mathrm{Me}_{2} \mathrm{CH}$), 202 (20, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 (49, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.

(R)-(E)-1-Diphenylphosphinoylhept-1-en-3-yl tert-butyldimethylsilyl ether 29a

2,6-Lutidine ($206 \mathrm{mg}, 1.93 \mathrm{mmol}$) and tert-butyldimethylsilyl trifluoromethanesulfonate ($338 \mathrm{mg}, 1.28 \mathrm{mmol}$) were added dropwise to a stirred solution of $(R)-(E)$-1-diphenylphosphino-ylhept-1-en-3-ol 18c in dry dichloromethane $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After 16 h , the reaction mixture was diluted with water, extracted with dichloromethane ($3 \times 10 \mathrm{~cm}^{3}$), and the combined organics were washed with hydrochloric acid (1.0 mol $\left.\mathrm{dm}^{-3}, 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash
chromatography, eluting with $1: 1$ EtOAc-hexane, to yield the silyl ether 29a ($261 \mathrm{mg}, 95 \%$) as an oil, $R_{\mathrm{f}} 0.49$ (EtOAc); $[a]_{\mathrm{D}}^{20}-1.0$ (c 0.38 in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: M^{+}, 428.2301. $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{PSi}$ requires $\left.M, 428.2300\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1653$ $(\mathrm{C}=\mathrm{C}), 1437(\mathrm{P}-\mathrm{Ph})$ and $1156(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-$ $7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 6.76\left(1 \mathrm{H}\right.$, ddd, J 3.7, 16.7 and ${ }^{3} J_{\mathrm{PH}} 20.5$, $\mathrm{PCH}=\mathrm{C} H), 6.47\left(1 \mathrm{H}\right.$, ddd, $J 1.6,16.7$ and $\left.{ }^{2} J_{\mathrm{PH}} 25.8, \mathrm{PCH}\right)$, $4.34(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}), 1.7-1.3(6 \mathrm{H}, \mathrm{m}), 0.88(9 \mathrm{H}, \mathrm{s}, \mathrm{t}-\mathrm{Bu}), 0.87$ ($3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}$), $0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $-0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$; $\delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.4^{+}(\mathrm{PCH}=\mathrm{CH}), 134-129\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, 119.9^{+}(d, ${ }^{1} J_{\mathrm{PC}} 103, \mathrm{PCH}$), 72.7^{+}(d, ${ }^{3} J_{\mathrm{PC}} 15.8$, CHOSi), 36.9^{-}, $27.1^{-}, 25.8^{+}(\mathrm{t}-\mathrm{Bu}), 22.6^{-}, 18.2^{-}(\mathrm{t}-\mathrm{Bu}), 14.0^{+}(\mathrm{Me}),-4.7^{+}(\mathrm{s}$, $\mathrm{SiMe})$ and $-4.9^{+}(\mathrm{s}, \mathrm{SiMe}) ; m / z 428.1\left(30 \%, \mathrm{M}^{+}\right)$and 371 $(M-B u)$.

(S)-(E)-3-Diphenylphosphinoyl-1-phenylprop-2-en-1-yl tertbutyldimethylsilyl ether 29b

By the general method described above, 2,6-lutidine (410 mg , 3.88 mmol), tert-butyldimethylsilyl trifluoromethanesulfonate $(683 \mathrm{mg}, 2.59 \mathrm{mmol})$ and (S)-(E)-1-phenyl-3-diphenylphos-phinoylprop-2-en-1-ol 18d gave a crude product which was purified by flash chromatography, eluting with $1: 1$ EtOAchexane and EtOAc, to yield the silyl ether 29b ($189 \mathrm{mg}, 32 \%$) as minute needles, mp $125-127^{\circ} \mathrm{C}$ (from EtOAc-hexane); $R_{\mathrm{f}} 0.49$ (EtOAc); $[a]_{\mathrm{D}}^{20}-62.5$ (c $0.5{\text { in } \mathrm{CHCl}_{3} ; 86 \% \text { ee) (Found: C, } 72.0 \text {; }}^{2}$ $\mathrm{H}, 7.15 ; \mathrm{P}, 6.9 \% ; \mathrm{M}^{+}$, 448.1974. $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{PSi}$ requires $\mathrm{C}, 72.3$; $\mathrm{H}, 7.40 ; \mathrm{P}, 6.9 \% ; M, 448.1987)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1625(\mathrm{C}=\mathrm{C})$, 1437 ($\mathrm{P}-\mathrm{Ph}$) and $1174(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-7.2$ (15 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph$), 6.82\left(1 \mathrm{H}\right.$, ddd, J 3.5, 16.7 and ${ }^{3} J_{\mathrm{PH}} 19.2$, $\mathrm{PCH}=\mathrm{C} H), 6.67\left(1 \mathrm{H}\right.$, ddd, $J 2.6,16.7$ and $\left.{ }^{2} J_{\mathrm{PH}} 24.4, \mathrm{PCH}\right)$, $5.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}), 0.87\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe})$ and $-0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 153.5^{+}(\mathrm{PCH}=C \mathrm{H})$, 141.4- (ipso-Ph), 134-129 ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and remaining Ph), 119.5^{+} (d, $\left.{ }^{1} J_{\mathrm{PC}} 102, \mathrm{PCH}\right), 75.2^{+}$(d, $\left.{ }^{3} J_{\mathrm{PC}} 17.0, \mathrm{CHOSi}\right), 25.7^{+}$(${ }^{(} \mathrm{Bu}$), $18.2^{-}\left({ }^{\mathrm{t}} \mathrm{Bu}\right),-4.9^{+}(\mathrm{SiMe})$ and $-5.0^{+}(\mathrm{SiMe}) ; m / z 448.2$ (35%, M^{+}) and 391.1 ($100, \mathrm{M}-\mathrm{Bu}$).
Also obtained was the silyl enol ether 31 ($340 \mathrm{mg}, 58 \%$) as an oil, $R_{\mathrm{f}} 0.35$ (EtOAc) (Found: M ${ }^{+}$, 448.1974. $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{PSi}$ requires M, 448.1987); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1646(\mathrm{C}=\mathrm{C}), 1437$ ($\mathrm{P}-\mathrm{Ph}$) and $1173(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.0-7.2(15 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ and Ph), $5.19(1 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}=\mathrm{C}), 3.26(2 \mathrm{H}, \mathrm{dd}, J 7.5$ and $\left.{ }^{2} J_{\mathrm{PH}} 15.5, \mathrm{PCH}_{2}\right), 0.93\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right)$ and $-0.11(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiMe}_{2}\right) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 152.7^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 12.6, \mathrm{CH}=C\right), 138-$ $126\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 99.8^{+}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 7.6, \mathrm{C} H=\mathrm{C}\right), 30.1^{-}(\mathrm{d}$, $\left.{ }^{1} J_{\mathrm{PC}} 67, \mathrm{PCH}_{2}\right), 25.8^{+}\left({ }^{(} \mathrm{Bu}\right), 18.2^{-}\left({ }^{(} \mathrm{Bu}\right)$ and $-4.0^{+}\left(\mathrm{SiMe}_{2}\right) ; ~ m / z$ $448.2\left(2 \%, \mathrm{M}^{+}\right)$and $201.0\left(65, \mathrm{Ph}_{2} \mathrm{PO}\right)$.

(S)-(E)-3-Diphenylphosphinoyl-1-phenylprop-2-en-1-yl tert-butyldimethylsilyl ether 29b

(S)-(E)-1-Phenyl-3-diphenylphosphinoylprop-2-en-1-ol 18d $(321 \mathrm{mg}, 0.96 \mathrm{mmol})$, tert-butyldimethylsilyl chloride (171 mg , $1.14 \mathrm{mmol})$ and imidazole ($113 \mathrm{mg}, 2.4 \mathrm{mmol}$) were stirred in dimethylformamide ($2 \mathrm{~cm}^{3}$) for 48 h . The reaction mixture was quenched with water $\left(10 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield a crude product which was purified by flash chromatography, eluting with 1:1 EtOAc-hexane, to give the silyl ether 29b ($445 \mathrm{mg},>99 \%$) as minute needles, $\mathrm{mp} 125-$ $127^{\circ} \mathrm{C}$ (from EtOAc-hexane), spectroscopically identical to that obtained previously.
(S)-(E)-3-Diphenylphosphinoyl-1-phenylprop-2-en-1-yl methoxymethyl ether 30b
Methoxymethyl chloride (1.41 ml of a $4.2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, 5.90 mmol) and Hünig's base ($775 \mathrm{mg}, 6.83 \mathrm{mmol}$) were added dropwise to a solution of (S)-(E)-3-diphenylphosphinoyl-1-phenylprop-2-en-1-ol $\mathbf{1 8 d}$ ($500 \mathrm{mg}, 1.50 \mathrm{mmol}$) in dry dichloromethane $\left(40 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 1 h ,
allowed to warm to room temperature, stirred for a further 15 h , quenched with saturated sodium carbonate $\left(50 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane ($3 \times 50 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with EtOAc, to give the methoxymethyl ether 30b ($580 \mathrm{mg},>99 \%$) as an oil, $R_{\mathrm{f}} 0.41$ (EtOAc); $[a]_{\mathrm{D}}^{20}-72.4$ (c 0.50 in $\mathrm{CHCl}_{3} ; 86 \%$ ee) (Found: M^{+}, 378.1386. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}$ requires $M, 378.1385$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $1635(\mathrm{C}=\mathrm{C}), 1437(\mathrm{P}-\mathrm{Ph})$ and $1174(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.6-7.2 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), $6.81(1 \mathrm{H}$, ddd, $J 4.3,16.9$ and $\left.{ }^{3} J_{\mathrm{PH}} 19.5, \mathrm{PCH}=\mathrm{C} H\right), 6.62(1 \mathrm{H}$, ddd, $J 1.5,16.9$ and $\left.{ }^{2} J_{\mathrm{PH}} 24.4, \mathrm{PCH}\right), 5.29(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}), 4.63(2 \mathrm{H}, \mathrm{AB}$ quartet, $\mathrm{OCH}_{2} \mathrm{O}$) and $3.33(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$; $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $150.5^{+}(\mathrm{PCH}=\mathrm{CH}), 138.5^{-}$(ipso-Ph), 132-127 (m, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$, $124.4^{+}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 100, \mathrm{PCH}\right), 94.1^{-}\left(\mathrm{OCH}_{2} \mathrm{O}\right), 77.6^{+}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 16\right.$, $\mathrm{PhCH})$ and $55.7^{+}(\mathrm{OMe}) ; m / z 378.1\left(40, \mathrm{M}^{+}\right)$and 201.0 (100, $\mathrm{Ph}_{2} \mathrm{PO}$).

(R)-(E)-1-Diphenylphosphinoylhept-1-en-3-yl methoxymethyl ether 30a

By the general method described above, $(R)-(E)$-1-diphenyl-phosphinoylhept-1-en-3-ol 18c ($634 \mathrm{mg}, 2.0 \mathrm{mmol}$) gave a crude product. Flash chromatography, eluting with EtOAc, gave the methoxymethyl ether 30a ($729 \mathrm{mg},>99 \%$) as a waxy unrecrystallisable solid, $R_{\mathrm{f}} 0.47$ (EtOAc); $[a]_{\mathrm{D}}^{20}+2.8$ (c 0.43 in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: $\mathrm{M}^{+}, 358.1690 . \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}$ requires M, 358.1698); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1602(\mathrm{C}=\mathrm{C}), 1437(\mathrm{P}-\mathrm{Ph})$ and $1171(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, $6.66\left(1 \mathrm{H}, \mathrm{ddd}, J 5.2,14.5\right.$ and $\left.^{3} J_{\mathrm{PH}} 17.0, \mathrm{PCH}=\mathrm{C} H\right), 6.43(1 \mathrm{H}$, dd, $J 17.1$ and $\left.{ }^{2} J_{\mathrm{PH}} 24.1, \mathrm{PCH}\right), 4.70(2 \mathrm{H}, \mathrm{AB}$ quartet, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 4.23(1 \mathrm{H}, \mathrm{m}, \mathrm{BuCH}), 3.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.58(2 \mathrm{H}$, $\mathrm{m}), 1.32(4 \mathrm{H}, \mathrm{m})$ and $0.88(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 151.6^{+}(\mathrm{PCH}=\mathrm{CH}), 133-127\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 122.3^{+}(\mathrm{d}$, $\left.{ }^{1} J_{\mathrm{PC}} 101, \mathrm{PCH}\right), 95.0^{-}\left(\mathrm{OCH}_{2} \mathrm{O}\right), 77.0^{+}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 16.8, \mathrm{BuCH}\right)$, $55.7^{+}(\mathrm{OMe}), 34.6^{-}, 27.3^{-}, 22.5^{-}$and $13.9^{+}(\mathrm{Me}) ; m / z 358.1$ $\left(10 \%, \mathrm{M}^{+}\right), 329.2(60, \mathrm{M}-\mathrm{Et}), 313.1$ (55, M - $\left.\mathrm{CH}_{2} \mathrm{OMe}\right)$ and 201.0 ($100, \mathrm{Ph}_{2} \mathrm{PO}$).

Attempted benzylation of alcohol 18d

p-Methoxybenzyl chloride ($231 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added dropwise to a solution of, (S)-(E)-3-diphenylphosphinoyl-1-phenylprop-2-en-1-ol $\mathbf{1 8 d}$ ($323 \mathrm{mg}, 0.97 \mathrm{mmol}$), sodium hydride ($47 \mathrm{mg}, 60 \%$ dispersion in oil, 1.2 mmol) and tetrabutylammonium iodide (10 mg) in dry THF ($15 \mathrm{~cm}^{3}$). The reaction mixture was stirred for 30 min , quenched with water $\left(15 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with $3: 1$ EtOAc-hexane to EtOAc, to give the ketone 32 ($119 \mathrm{mg}, 28 \%$) as an oil, $R_{\mathrm{f}} 0.50$ (EtOAc) (Found: M ${ }^{+}$, 454.1700. $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{PO}_{3}$ requires $M, 454.1697)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1679(\mathrm{C}=\mathrm{O})$ and 1438 $(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.2\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$)$, $6.98(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 6.71(2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{Ar}), 4.21(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}\right), 3.71(3 \mathrm{H}, \mathrm{MeO})$, $3.05(1 \mathrm{H}$, dd, $J 7.0$ and 13.6 , $\left.\mathrm{ArCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.94\left(1 \mathrm{H}, \mathrm{td}, 8.3\right.$ and 17.1, $\left.\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.77(1 \mathrm{H}$, dd, $J 7.0$ and 13.6, $\mathrm{ArCH}_{\mathrm{A}} H_{\mathrm{B}}$) and $2.44(1 \mathrm{H}$, ddd, $J 4.4,12.3$ and 15.2, $\mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.7^{-}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 4.9\right.$, $\mathrm{C}=\mathrm{O}), 158.3^{-}$(ipso- Ph), 136-128(m, $\mathrm{Ph}_{2} \mathrm{PO}$ and remaining Ph and Ar), $113.9^{+}(\mathrm{Ar}), 55.2^{+}(\mathrm{OMe}), 41.5^{+}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 1.4\right.$, $\left.\mathrm{PCH}_{2} \mathrm{CH}\right), 39.2^{-}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 9.5, \mathrm{ArCH}_{2}\right)$ and $31.7^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 70.4\right.$, $\left.\mathrm{PCH}_{2}\right) ; m / z 454.2\left(40 \%, \mathrm{M}^{+}\right), 349.1(95, \mathrm{PhCO})$ and 216.1 (100, $\mathrm{Ph}_{2} \mathrm{POMe}$).

Also obtained was the phenyl ketone $33(169 \mathrm{mg}, 52 \%)$ as an oil, $R_{\mathrm{f}} 0.21$ (EtOAc) (Found: M^{+}, 334.1123. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ requires $M, 334.1123) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1685(\mathrm{C}=\mathrm{O}), 1435(\mathrm{P}-\mathrm{Ph})$ and $1176(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.0-7.4\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{Ph}), 3.28\left(2 \mathrm{H}, A A^{\prime} \mathrm{BB}^{\prime} \mathrm{m}\right)$ and $2.78\left(2 \mathrm{H}, \mathrm{AA}^{\prime} B^{\prime} \mathrm{m}\right) ; \delta_{\mathrm{C}}(63$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 197.8^{-}(\mathrm{C}=\mathrm{O}), 135-127\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$)$, $30.7^{-}\left(\mathrm{CH}_{2} \mathrm{CO}\right)$ and $23.7^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 74, \mathrm{PCH}_{2}\right) ; m / z 334.1(80 \%$,
$\left.\mathrm{M}^{+}\right), 306.1$ (90), 201.1 (90, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 105(100, \mathrm{PhCO})$ and 77 $(90, \mathrm{Ph})$.

(R)-1-Diphenylphosphinoylheptan-3-ol 36a

(R)-(E)-1-Diphenylphosphinoylhept-1-en-3-ol 18c (734 mg, $2.32 \mathrm{mmol})$ in dry THF ($5 \mathrm{~cm}^{3}$) was added by cannula to a stirred suspension of lithium aluminium hydride ($208 \mathrm{mg}, 5.5$ $\mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction was stirred for 5 min , quenched carefully with water, extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, and the combined organic extracts dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with 5% methanol in EtOAc, to give the γ hydroxyphosphine oxide 36a ($650 \mathrm{mg}, 88 \%$) as needles, mp $111-113{ }^{\circ} \mathrm{C}$ (from EtOAc-hexane); $R_{\mathrm{f}} 0.15$ (EtOAc); $[\alpha]_{\mathrm{D}}^{20}-9.8$ (c 0.25 in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: C, 72.4; H, 7.80; P, 9.7\%; $\mathrm{M}^{+}-\mathrm{H}, 315.1498 . \mathrm{C}_{29} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 72.1 ; \mathrm{H}, 7.95 ; \mathrm{P}$, $9.8 \% ; M-\mathrm{H}, 315.1514) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3450(\mathrm{OH}), 1438$ $(\mathrm{P}-\mathrm{Ph})$ and $1171(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.4(10 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.65(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.6-2.3\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right), 2.2-$ $1.2(8 \mathrm{H}, \mathrm{m})$ and $0.86(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 134-127 (m, $\mathrm{Ph}_{2} \mathrm{PO}$), 71.4^{+}(d, $\left.{ }^{3} J_{\mathrm{PC}} 9.5, \mathrm{CHOH}\right), 37.0^{-}, 29.5^{-}$, $27.9^{-}, 26.3^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 72, \mathrm{PCH}_{2}\right), 22.6^{-}$and $14.1^{+}(\mathrm{Me}) ; m / z 315.1$ $\left(10 \%, \mathrm{M}^{+}-\mathrm{H}\right)$, $298.1\left(55, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 259(100, \mathrm{M}-\mathrm{Bu})$ and 202.0 ($80, \mathrm{Ph}_{2} \mathrm{POH}$).

(S)-3-Diphenylphosphinoyl-1-phenylpropan-1-ol 36b

By the general method described above, (S)-(E)-3-diphenyl-phosphinoyl-1-phenylprop-2-en-1-ol 18d ($498 \mathrm{mg}, 1.49 \mathrm{mmol}$) gave a crude product which was purified by flash chromatography, eluting with 6% methanol in EtOAc, to give the hydroxyphosphine oxide 36b ($434 \mathrm{mg}, 87 \%$) as needles, mp 127$129^{\circ} \mathrm{C}$ (from EtOAc-hexane); $R_{\mathrm{f}} 0.13$ (EtOAc); $[a]_{\mathrm{D}}^{20}-11.7$ (c 0.71 in $\mathrm{CHCl}_{3} ; 86 \%$ ee) (Found: C, $75.3 ; \mathrm{H}, 6.30 ; \mathrm{P}, 9.1 \%$; $\mathrm{M}^{+}-\mathrm{H}, 336.1275 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 6.30$; P, $9.2 \% ; M-\mathrm{H}, 336.1279) ; v_{\max }($ Nujol $) / \mathrm{cm}^{-1} 3301(\mathrm{OH}), 1438$ $(\mathrm{P}-\mathrm{Ph})$ and $1171(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.7-7.0(15 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph$), 4.97(1 \mathrm{H}, \mathrm{d}, J 6, \mathrm{OH}), 4.58(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 2.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right)$ and $1.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 144.2^{-}$(ipso- Ph), 134-127 ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and remaining Ph), 73.0^{+}(d, $\left.{ }^{3} J_{\mathrm{PC}} 12.4, \mathrm{CHOH}\right), 30.9^{-}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 2.5\right.$, CH_{2}) and $25.5^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 71.8, \mathrm{PCH}_{2}\right) ; m / z 336.1\left(50 \%, \mathrm{M}^{+}\right)$and 202.0 ($100, \mathrm{Ph}_{2} \mathrm{POH}$).
($2 R, 3 R$)- and ($2 S, 3 R$)-1-Diphenylphosphinoyl-2-methylheptan-3ol anti- and syn-37b

By the general method described above, (R)-(E)-1-diphenyl-phosphinoyl-2-methylhept-1-en-3-ol 18 e ($407 \mathrm{mg}, 1.24 \mathrm{mmol}$) gave a crude product which was purified by flash chromatography, eluting with 8% methanol in EtOAc, to give the hydroxy phosphine oxides 37b ($337 \mathrm{mg}, 83 \%$, anti:syn $59: 41$ mixture) as an oil, $[a]_{\mathrm{D}}^{20}+0.3$ ($c 1.13$ in $\mathrm{CHCl}_{3} ; 74 \%$ ee), spectroscopically identical to those obtained previously.

($1 R, 2 R$)- and ($1 R, 2 S$)-1-Cyclohexyl-3-diphenylphosphinoyl-2-methylpropan-1-ol anti- and syn-37d

By the general method described above, $(R)-(E)-1-$ cyclohexyl-3-diphenylphosphinoyl-2-methylprop-2-en-1-ol $\mathbf{1 8 f}$ ($348 \mathrm{mg}, 0.98$ mmol) gave a crude product which was purified by flash chromatography, eluting with 2% methanol in EtOAc, to give the hydroxy phosphine oxides 37d ($294 \mathrm{mg}, 85 \%$, anti:syn 61:39 mixture) as an oil, $R_{\mathrm{f}} 0.38$ (8% methanol in EtOAc); $[a]_{\mathrm{D}}^{20}$ -4.1 (c 1.49 in $\mathrm{CHCl}_{3} ; 84 \%$ ee) (Found: $\mathrm{M}^{+}-\mathrm{H}, 355.1833$. $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{PO}_{2}$ requires $M-\mathrm{H}, 355.1827$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3348$ $(\mathrm{OH}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1159(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-$ $7.7(4 \mathrm{H}, \mathrm{m}), 7.55-7.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.79(1 \mathrm{H}, \mathrm{d}, J 6.1$, $\left.\mathrm{OH}^{\text {maj }}\right), 3.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}^{\text {maj }}\right.$ and $\left.\mathrm{OH}^{\text {min }}\right), 3.06(1 \mathrm{H}, \mathrm{q}, J 5.0$, $\left.\mathrm{CHOH}{ }^{\mathrm{min}}\right), 2.65-1.0(14 \mathrm{H}, \mathrm{m}), 0.99\left(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me}^{\text {min }}\right)$ and
$0.90\left(3 \mathrm{H}, \mathrm{d}, J 6.1, \mathrm{Me}^{\text {maj }}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134.5-128.5$ ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $80.4^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 6.9, \mathrm{CHOH}^{\text {maj }}\right), 77.4^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}}\right.$ $7.0, \mathrm{CHOH}^{\text {min }}$), 40.5^{+}(min), 40.3^{+}(maj), 34.5^{-}(d, ${ }^{1} J_{\mathrm{PC}} 69.8$, $\left.\mathrm{PCH}_{2}{ }^{\text {maj }}\right), 32.8^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 70.5, \mathrm{PCH}_{2}{ }^{\text {min }}\right), 32-25(\mathrm{~m}), 19.9^{+}$ (d, ${ }^{3} J_{\mathrm{PC}} 4.4, \mathrm{Me}^{\mathrm{min}}$) and $14.2^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 10.2, \mathrm{Me}^{\mathrm{maj}}\right) ; m / z 355.2$ $\left(2 \%, \mathrm{M}^{+}-\mathrm{H}\right), 338.2\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ and $202.1\left(\mathrm{Ph}_{2} \mathrm{PO}\right)$.

($2 R, 3 R$)- and ($2 R, 3 S$)-4-Diphenylphosphinoyl-3-methylbutan-2ol anti- and syn-37a

Methyllithium ($14.3 \mathrm{~cm}^{3}$ of a $1.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in ether, 20 mmol) was added to a stirred suspension of copper(I) iodide $(1.27 \mathrm{~g}, 6.7 \mathrm{mmol})$ in dry ether $\left(30 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$. $(R)-(E)-4-$ Diphenylphosphinoylbut-3-en-2-ol 18a ($397 \mathrm{mg}, 1.45 \mathrm{mmol}$) was added to the reaction which was refluxed for 7 days, quenched with saturated ammonia solution ($20 \mathrm{~cm}^{3}$) and saturated ammonium chloride solution ($20 \mathrm{~cm}^{3}$), extracted with dichloromethane $\left(4 \times 20 \mathrm{~cm}^{3}\right)$, and the combined organic extracts washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product. Analysis of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the crude product revealed it to be a $62: 38$ mixture of anti- and syn-37a. Purification by flash chromatography, eluting with EtOAc, gave the hydroxyphosphine oxides anti- and syn- 37 a ($250 \mathrm{mg}, 60 \%$, anti $\operatorname{syn} 63: 37$) as an oil, $R_{\mathrm{f}} 0.22(\mathrm{EtOAc}) ;[\alpha]_{\mathrm{D}}^{20}-1.6(c 0.25$ in $\mathrm{CHCl}_{3} ; 46 \%$ ee); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3348(\mathrm{OH}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1162(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, $4.10\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}^{\text {ant } i+s y n}\right), 3.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}^{\text {syn }}\right), 3.58(1 \mathrm{H}$, quintet, $\left.J 6.2, \mathrm{CHOH}^{\text {anti }}\right), 2.6-1.2(3 \mathrm{H}, \mathrm{m}), 1.15(3 \mathrm{H}, \mathrm{d}, J 6.2$, $\left.\mathrm{Me}^{a n t i}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J 6.3, \mathrm{Me}^{s y n}\right), 0.95\left(3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{Me}^{\text {anti }}\right)$ and $0.93\left(3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{Me}^{s y n}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134-128$ $\left(\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 72.2^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 6.7, \mathrm{CHOH}^{\text {anti }}\right), 69.9^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 6.0\right.$, $\left.\mathrm{CHOH}^{s y n}\right), 36.5^{+}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 3.7, \mathrm{CHMe}^{a n t i}\right), 35.1^{+}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}}\right.$ $\left.3.7, C H M e^{s y n}\right), 34.2^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 70.0, \mathrm{PCH}_{2}{ }^{\text {ant }}\right), 32.1^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 70.1\right.$, $\left.\mathrm{PCH}_{2}{ }^{s y n}\right), 21.2^{+}\left(\mathrm{Me}^{a n t i}\right), 19.3^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 7.6, \mathrm{Me}^{a n t i}\right), 18.1^{+}\left(\mathrm{Me}^{s y n}\right)$ and $17.8^{+}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 10.3, \mathrm{Me}^{\text {syn }}\right.$); $m / z 289.1\left(40 \%, \mathrm{MH}^{+}\right), 288.1$ $\left(10, \mathrm{M}^{+}\right), 215.1\left(70, \mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)$ and $202.1\left(100, \mathrm{Ph}_{2} \mathrm{POH}\right)$.

(1S,2R)-3-Diphenylphosphinoyl-2-methyl-1-phenylpropan-1-ol anti-37c

By the general method described above, copper(I) iodide (12.1 $\mathrm{g}, 64 \mathrm{mmol}$), methyllithium ($136 \mathrm{~cm}^{3}$ of a $1.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in ether, 190 mmol) and (S)-(E)-3-diphenylphosphinoyl-1-phenylprop-2-en-1-ol $18 d(4.05 \mathrm{~g}, 12.1 \mathrm{mmol})$ gave a crude product after 3 days. Analysis of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the crude product revealed it to be a $30: 52: 18$ mixture of ketone 32, anti- and syn-37c. Purification by flash chromatography, eluting with EtOAc, recrystallisation from EtOAc, and HPLC separation, eluting with 1.5% methanol in chloroform gave the hydroxy phosphine oxide anti-37c $(0.89 \mathrm{~g}, 22 \%), t_{\mathrm{r}}$ $21 \mathrm{~min} ; R_{\mathrm{f}} 0.27$ (EtOAc); $[a]_{\mathrm{D}}^{20}-17.1$ (c 0.82 in $\mathrm{CHCl}_{3} ; 86 \%$ ee) (Found: C, 75.3; H, 6.60; P, 8.9\%; M^{+}, 350.1434. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires C, $75.4 ; \mathrm{H}, 6.65 ; \mathrm{P}, 8.8 \% ; M, 350.1436) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3447(\mathrm{OH})$ and $1423(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.1$ $\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 4.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.42(1 \mathrm{H}, \mathrm{d}$, $J 6.7, \mathrm{CHOH}), 2.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CHMe}), 2.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right)$ and 0.88 ($3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{Me}$); $\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.6^{-}$(ipso- Ph), 136-126 ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and remaining Ph), $78.9^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 7.8\right.$, $\mathrm{CHOH}), 36.4^{+}(C \mathrm{HMe}), 32.5^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 70.2, \mathrm{PCH}_{2}\right)$, and 19.3^{+} (d, $\left.{ }^{3} J_{\mathrm{PC}} 5.1, \mathrm{Me}\right) ; m / z 350.1\left(10 \%, \mathrm{M}^{+}\right)$and 202.0 (100, $\mathrm{Ph}_{2} \mathrm{POH}$).

Also obtained was ($1 S, 2 S$)-3-diphenylphosphinoyl-2-methyl-1-phenylpropan-1-ol $\operatorname{syn}-37 \mathrm{c}(378 \mathrm{mg}, 10 \%)$ as an oil, $t_{\mathrm{r}} 20 \mathrm{~min}$; $R_{\mathrm{f}} 0.27$ (EtOAc); $[a]_{\mathrm{D}}^{20}-12.3$ (c 0.83 in $\mathrm{CHCl}_{3} ; 86 \%$ ee) (Found: M^{+}, 350.1425. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $M, 350.1436$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3450(\mathrm{OH})$ and $1423(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-7.1$ $\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 4.81(1 \mathrm{H}$, dd, $J 3.6$ and $5.3, \mathrm{CHOH})$, $4.67(1 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{OH}), 2.51\left(1 \mathrm{H}\right.$, ddd, $J 7.4,{ }^{2} J_{\mathrm{PH}} 13.0$ and $\left.{ }^{2} J_{\mathrm{HH}} 15.2, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.37(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 2.09(1 \mathrm{H}, \mathrm{ddd}$, $J 7.4,9.7$ and $\left.^{2} J_{\mathrm{HH}} 15.2, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $0.89(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me})$;
$\delta_{\mathrm{C}}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.3^{-}$(ipso- Ph), $136-126\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and remaining Ph), 76.2^{+}($\mathrm{d},{ }^{3} J_{\mathrm{PC}} 9.5, \mathrm{CHOH}$), 35.6^{+}(d, ${ }^{2} J_{\mathrm{PC}} 2.6$, $C \mathrm{HMe}), 32.6^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 69.5, \mathrm{PCH}_{2}\right)$, and $17.2^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 9.1, \mathrm{Me}\right)$; $m / z 350.1\left(40 \%, \mathrm{M}^{+}\right), 332.1\left(50, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$ and $202.0(100$, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$.

(2R,3R)-1-Diphenylphosphinoyl-2-methylheptan-3-ol anti-37b

By the general method described above, copper(I) iodide (6.0 g , 32 mmol), methyllithium ($68 \mathrm{~cm}^{3}$ of a $1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in ether, 95 mmol) and $(R)-(E)$-1-diphenylphosphinoylhept-1-en3 -ol $18 \mathrm{c}(2.14 \mathrm{~g}, 6.8 \mathrm{mmol})$ with preparation of the reagent at $20^{\circ} \mathrm{C}$ and reaction for 7 days in refluxing ether gave a crude product. Analysis of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the crude product revealed it to be a $78: 22$ mixture of anti- and syn-37b. Purification by flash chromatography, eluting with 2% methanol in EtOAc, and by HPLC, eluting with 1.5% methanol in chloroform, gave the hydroxy phosphine oxide anti-37b (868 $\mathrm{mg}, 41 \%)$ as an oil, $t_{\mathrm{r}} 17 \mathrm{~min} ; R_{\mathrm{f}} 0.32(\mathrm{EtOAc}) ;[a]_{\mathrm{D}}^{20}+7.4(c 0.73$ in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: $\mathrm{MH}^{+}, 331.1825 . \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$ requires $M \mathrm{H}, 331.1824)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3442(\mathrm{OH}), 1422(\mathrm{P}-\mathrm{Ph})$ and $1217(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, $3.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.34(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.55(1 \mathrm{H}$, ddd, $J 5.5,{ }^{2} J_{\mathrm{PH}} 12.2$ and $\left.{ }^{2} J_{\mathrm{HH}} 15.4, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.20(1 \mathrm{H}$, ddd, $J 6.3$, ${ }^{2} J_{\mathrm{PH}} 10.7$ and $\left.{ }^{2} J_{\mathrm{HH}} 15.4, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.6-$ $1.3(6 \mathrm{H}, \mathrm{m}), 0.95(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me})$ and $0.85(3 \mathrm{H}, \mathrm{t}, J 6.8$, $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 75.9^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}}\right.$ $6.9, \mathrm{CHOH}), 34.8^{+}\left(\mathrm{d},{ }^{2} J_{\mathrm{PC}} 3.5, C \mathrm{HMe}\right), 34.5^{-}, 33.4^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}\right.$ $70.2, \mathrm{PCH}_{2}$), 28.6 ${ }^{-}, 22.8^{-}, 19.4^{+}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 6.7, \mathrm{Me}\right)$ and 14.1^{+} (Me); $m / z 331.1\left(35 \%, \mathrm{MH}^{+}\right), 273(85, \mathrm{M}-\mathrm{Bu})$ and 202.0 (100, $\mathrm{Ph}_{2} \mathrm{POH}$).

Also obtained was ($2 S, 3 R$)-1-diphenylphosphinoyl-2-methyl-heptan-3-ol syn-37b ($370 \mathrm{mg}, 22 \%$) as an oil, $t_{\mathrm{r}} 16 \mathrm{~min} ; R_{\mathrm{f}} 0.32$ (EtOAc); $[a]_{\mathrm{D}}^{20}-1.2\left(c 0.89\right.$ in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: $\mathrm{M}^{+}-\mathrm{H}$, 329.1693. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$ requires $\left.M-\mathrm{H}, 329.1671\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3450(\mathrm{OH}), 1423(\mathrm{P}-\mathrm{Ph})$ and $1208(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) 7.8-7.4 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $3.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.58$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.53\left(1 \mathrm{H}\right.$, ddd, $J 7.8,{ }^{2} J_{\mathrm{PH}} 14.0$ and ${ }^{2} J_{\mathrm{HH}}$ $\left.15.0, \mathrm{PC} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.22\left(1 \mathrm{H}\right.$, ddd, $J 5.8,{ }^{2} J_{\mathrm{PH}} 9.1$ and ${ }^{2} J_{\mathrm{HH}} 15.0$, $\mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}$), $2.09(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{Me}), 1.5-1.2(6 \mathrm{H}, \mathrm{m}), 0.91$ (3 $\mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me})$ and $0.82(3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{Me}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 134-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 73.8^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 5.0, \mathrm{CHOH}\right)$, 34.4^{+}(d, $\left.{ }^{2} J_{\mathrm{PC}} 3.3, C \mathrm{HMe}\right), 33.2^{-}$(d, ${ }^{1} J_{\mathrm{PC}} 70.0, \mathrm{PCH}_{2}$), 32.5- , $28.6^{-}, 22.7^{-}, 17.0^{+}\left(\mathrm{d},{ }^{3} J_{\mathrm{PC}} 10.7\right.$, Me) and 14.1^{+}(Me); m / z $329.1\left(10 \%, \mathrm{M}^{+}-\mathrm{H}\right), 312.2\left(50, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$ and 202.0 (100, $\mathrm{Ph}_{2} \mathrm{POH}$).

Addition of $\mathrm{Me}_{2}(\mathbf{C N}) \mathrm{CuLi}_{2}$ to vinyl phosphine oxide 18c in ether

By the general method described above, copper(I) cyanide (1.51 $\mathrm{g}, 7.9 \mathrm{mmol}$), methyllithium ($17.1 \mathrm{~cm}^{3}$ of a $1.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in ether, 23.9 mmol) and $(R)-(E)$-1-diphenylphosphinoyl-hept-1-en-3-ol 18c ($500 \mathrm{mg}, 1.59 \mathrm{mmol}$) with preparation of the reagent at $20^{\circ} \mathrm{C}$ and reaction for 3 days in refluxing ether gave a crude product. Analysis of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of the crude product revealed it to be a 19:63:18 mixture of starting material, anti- and $\operatorname{syn}-\mathbf{3 7 b}$.

(\boldsymbol{R})-(\boldsymbol{E})-1-Diphenylphosphinoyl-1-(trimethylsilyl)hept-1-en-3-yl methoxymethyl ether 40

LDA ($6.0 \mathrm{~cm}^{3}$ of a $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF, 1.2 mmol) was added dropwise to a solution of $(R)-(E)$-1-diphenyl-phosphinoylhept-1-en-3-yl methoxymethyl ether 30a (363 mg , 1.01 mmol) and chlorotrimethylsilane ($437 \mathrm{mg}, 4.0 \mathrm{mmol}$) in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h , quenched with water $\left(10 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude product which was purified by flash chromatography, eluting with 3:1 EtOAc-hexane, to give the a-silyl vinyl phosphine oxide $\mathbf{4 0}(310 \mathrm{mg}, 71 \%)$ as an oil, $R_{\mathrm{f}} 0.55(\mathrm{EtOAc}) ;[a]_{\mathrm{D}}^{20}$
$+5.1\left(c 0.51\right.$ in $\mathrm{CHCl}_{3} ; 76 \%$ ee $) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1440(\mathrm{P}-\mathrm{Ph})$ and $1177(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.7-7.4(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 6.22\left(1 \mathrm{H}, \mathrm{dd}, J 9.1\right.$ and $\left.{ }^{3} J_{\mathrm{PH}} 33.0, \mathrm{PC}=\mathrm{CH}\right), 4.61(1 \mathrm{H}$, d, $\left.J 6.9, O C H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.55\left(1 \mathrm{H}, J 6.9, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 4.41(1 \mathrm{H}$, $\mathrm{m}, \mathrm{BuCH}), 1.5-1.2(6 \mathrm{H}, \mathrm{m}), 0.89(3 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{Me})$ and $0.18(9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 161.8^{+}(\mathrm{PC}=\mathrm{CH}), 132-128$ $\left(\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 116^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 101, \mathrm{PC}\right), 94.8^{-}\left(\mathrm{OCH}_{2} \mathrm{O}\right), 76.7^{+}$ $(\mathrm{BuCH}), 55.5^{+}(\mathrm{OMe}), 34.9^{-}, 27.6^{-}, 22.6^{-}, 14.0^{+}(\mathrm{Me})$ and 1.3^{+} $\left(\mathrm{SiMe}_{3}\right)$.

Attempted addition of Fleming's silyl cuprate to vinyl phosphine oxide 18c

Dimethylphenylsilyllithium ${ }^{10}\left(2.3 \mathrm{~cm}^{3}\right.$ of a $1.3 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF, 3.07 mmol) was added dropwise to a stirred suspension of copper(I) cyanide ($138 \mathrm{mg}, 1.53 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) at $0{ }^{\circ} \mathrm{C}$ and the reaction stirred for 40 min . (R)(E)-1-Diphenylphosphinoylhept-1-en-3-ol 18c was added to the reaction mixture which was stirred overnight at room temperature, diluted with saturated ammonia solution ($20 \mathrm{~cm}^{3}$) and saturated ammonium chloride solution $\left(20 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane $\left(4 \times 20 \mathrm{~cm}^{3}\right)$, the combined organic extracts washed with brine $\left(20 \mathrm{~cm}^{3}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with $2: 1$ EtOAc-hexane, to yield the allylic phosphine oxides (E) - and $(Z)-41(71 \mathrm{mg}, 76 \%, 83: 27$ mixture) as an oil, $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-7.3(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 5.5\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}^{E+Z}\right), 3.30(2 \mathrm{H}, \mathrm{dd}, J 7.6$ and ${ }^{2} J_{\mathrm{PH}} 14.7, \mathrm{PCH}_{2}{ }^{Z}$), $3.05\left(2 \mathrm{H}\right.$, dd, $J 6$ and $\left.{ }^{2} J_{\mathrm{PH}} 14.0, \mathrm{PCH}_{2}{ }^{E}\right)$, $1.95(2 \mathrm{H}, \mathrm{m}), 1.25(4 \mathrm{H}, \mathrm{m})$ and $0.85(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me})$. The E isomer was spectroscopically identical to that reported previously. ${ }^{15 b}$

($2 R, 3 R$)- and ($2 S, 3 R$)-2-(Dimethylphenylsilyl)-1-diphenylphos-phinoylheptan-3-yl tert-butyldimethylsilyl ether anti- and syn-42a

By the general method described above, (R)-(E)-1-diphenyl-phosphinoylhept-1-en-3-yl tert-butyldimethylsilyl ether 29a ($106 \mathrm{mg}, 0.25 \mathrm{mmol}$), copper(I) cyanide ($100 \mathrm{mg}, 1.16 \mathrm{mmol}$) and dimethylphenylsilyllithium $\left(1.7 \mathrm{~cm}^{3}\right.$ of a $1.3 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF, 2.2 mmol) gave a crude product which was purified by flash chromatography, eluting with $3: 1$ hexane-EtOAc, to yield the silyl phosphine oxides anti- and syn-42a (117 mg , $84 \%, 70: 30$ mixture) as an oil, $R_{\mathrm{f}} 0.13$ (4:1 hexane-EtOAc); $[a]_{\mathrm{D}}^{20}+0.6$ (c 0.36 in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: $\mathrm{M}^{+}, 564.3020$. $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{O}_{2} \mathrm{PSi}_{2}$ requires $\left.M, 564.3009\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1437\right.$ $(\mathrm{P}-\mathrm{Ph})$ and $1169(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.6-7.2(15 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and SiPh$), 4.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}{ }^{\text {ant }}\right.$), $3.61(1 \mathrm{H}, \mathrm{t}$, $\left.J 4.5, \mathrm{CHOSi}^{\mathrm{syn}}\right)$, $2.44\left(1 \mathrm{H}, \mathrm{td}, J 11.6\right.$ and $\left.14.4, \mathrm{H}^{a n t i}\right)$, 2.12$1.0(\mathrm{~m}), 0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}^{\mathrm{syn}}\right), 0.84\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}^{\text {anti }}\right), 0.40,0.39$, $0.38,0.26(\mathrm{SiMe}), 0.04(2 \times \mathrm{SiMe}), 0.02$ and $-0.16(\mathrm{SiMe})$; $m / z 564.3\left(20 \%, \mathrm{M}^{+}\right) 507.2\left(100, \mathrm{M}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$ and $135.1(100$, $\mathrm{PhMe}_{2} \mathrm{Si}$).

(1R,2R)-2-(Dimethylphenylsilyl)-3-diphenylphosphinoyl-1-phen-ylprop-1-yl tert-butyldimethylsilyl ether anti-42b

By the general method described above, (S)-(E)-3-diphenyl-phosphinoyl-1-phenylprop-2-en-1-yl tert-butyldimethylsilyl ether 29b ($117 \mathrm{mg}, 0.26 \mathrm{mmol}$), copper(I) cyanide ($100 \mathrm{mg}, 1.12$ mmol) and dimethylphenylsilyllithium ($1.7 \mathrm{~cm}^{3}$ of a 1.3 mol dm^{-3} solution in THF, 2.2 mmol), with addition of 29b at $-78^{\circ} \mathrm{C}$ and stirring for 2 h gradually warming to room temperature gave a crude product which was purified by flash chromatography, eluting with $3: 1$ hexane-EtOAc, to yield the silyl phosphine oxide anti-42b ($88 \mathrm{mg}, 58 \%$) as an oil, $R_{\mathrm{f}} 0.39$ (3:2 hexane-EtOAc); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.6-7.0(20 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}, \mathrm{Ph}$ and SiPh), 5.84 (d, J 4.7, CHOSi), 2.25 (1 H , ddd, $J 12.1,13.0$ and $\left.^{2} J_{\mathrm{HH}} 15.7, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.08(1 \mathrm{H}$, ddd, $J 2.6,7.9$ and $\left.{ }^{2} J_{\mathrm{HH}} 15.7, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.73(1 \mathrm{H}$, dddd, J 2.6, 4.7, 11.9 and 16.2, CHSi$), 0.85\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 0.55,-0.09,-0.11$ and -0.26
$(4 \times \mathrm{SiMe})$. This compound decomposed on standing to the (E)-allylic phosphine oxide $44{ }^{15 b}$

(1R,2R)-2-(Dimethylphenylsilyl)-3-Diphenylphosphinoyl-1phenylpropyl methoxymethyl ether anti-43

By the general method described above, (S)-(E)-3-diphenyl-phosphinoyl-1-phenylprop-2-en-1-yl methoxymethyl ether 30b ($2.25 \mathrm{~g}, 5.8 \mathrm{mmol}$), copper(I) cyanide ($1.92 \mathrm{mg}, 21.5 \mathrm{mmol}$) and dimethylphenylsilyllithium ($23.6 \mathrm{~cm}^{3}$ of a $1.7 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF, 42.5 mmol), with addition of $\mathbf{3 0 b}$ at $-78^{\circ} \mathrm{C}$ and stirring for 16 h gradually warming to room temperature, gave a crude product which was purified by flash chromatography, eluting with $1: 1$ hexane-EtOAc, to yield the silyl phosphine oxide anti-43 ($2.18 \mathrm{~g}, 71 \%$; anti:syn 88:12) as an oil, $R_{\mathrm{f}} 0.58$ (EtOAc); $[\alpha]_{\mathrm{D}}^{20}-15.9$ (c 1.54 in CHCl_{3}) (Found: $\mathrm{M}^{+}, 514.2096$. $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{PSi}$ requires $\left.M, 514.2093\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1437(\mathrm{P}-$ $\mathrm{Ph})$ and $1176(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.7-7.1(20 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}, \mathrm{Ph}$ and SiPh$), 5.41\left(1 \mathrm{H}, \mathrm{br}\right.$ s, $\left.\mathrm{CHOMOM}^{s y n}\right), 4.88(1 \mathrm{H}$, $\left.\mathrm{d}, J 6.3, \mathrm{CHOMOM}^{\text {ant }}\right), 4.63\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}} 6.2, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}^{\text {syn }}\right)$, $4.52\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}} 6.2, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}^{\text {syn }}\right), 4.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}^{\text {anti }}\right)$, $3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}^{s y n}\right), 3.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}^{\text {anti }}\right), 2.7-1.8(2 \mathrm{H}$, $\left.\mathrm{m}^{\text {syn }+ \text { anti }}\right), 0.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}_{\mathrm{M}} \mathrm{e}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}{ }^{\text {syn }}\right), 0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}^{2} e_{\mathrm{A}^{-}}\right.$ $\left.\mathrm{Me}_{\mathrm{B}}{ }^{\text {anti }}\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}{ }^{\text {anti }}\right)$ and $-0.04(3 \mathrm{H}, \mathrm{s}, \mathrm{Si}-$ $\left.\mathrm{Me}_{\mathrm{A}} M e_{\mathrm{B}}{ }^{\text {syn }}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.6^{-}$(ipso- $\mathrm{Ph}^{s y n}$), 140.9^{-} (ipso- $\mathrm{Ph}^{\text {anti }}$), 138.9 ${ }^{-}$(ipso- $\mathrm{Ph}^{\text {syn }}$), 138.4 ${ }^{-}$(ipso- $\mathrm{Ph}^{\text {anti }), ~ 132-126 ~}$ $\left(\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}, \mathrm{Ph}\right.$ and SiPh$), 96.3^{-}\left(\mathrm{OCH}_{2} \mathrm{O}^{s y n}\right), 94.7^{-}\left(\mathrm{OCH}_{2} \mathrm{O}^{\text {anti }}\right)$, 81.5^{+}(CHOMOM ${ }^{s y n}$), 79.5+ $\left(\mathrm{CHOMOM}^{\text {antit }}\right), 56.4^{+}\left(\mathrm{OMe}^{s y n}\right)$, $56.0^{+}\left(\mathrm{OMe}^{\text {anti }}\right), 29.8^{+}\left(\mathrm{CHSi}^{\text {sym }}\right), 28.1^{+}\left(\mathrm{CHSi}^{\text {antit }}\right), 27.5^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}}\right.$ $\left.67, \mathrm{PCH}_{2}{ }^{\text {syn }}\right), 26.4^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 67, \mathrm{PCH}_{2}{ }^{\text {antit }}\right),-1.9^{+}\left(\mathrm{Si} M e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}{ }^{\text {syn }}\right)$, $-2.3^{+}\left(\operatorname{Si}_{2} e_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}}{ }^{\text {anti }}\right),-1.9^{+}\left(\mathrm{SiMe}_{\mathrm{A}} M e_{\mathrm{B}}{ }^{\text {syn }}\right)$ and $-4.2^{+}\left(\mathrm{SiMe}_{\mathrm{A}}{ }^{-}\right.$ $\left.M e_{\mathrm{B}}{ }^{\text {ant }}\right) ; m / z 514.2\left(2 \%, \mathrm{M}^{+}\right), 469.2\left(70, \mathrm{M}-\mathrm{MeOCH}_{2}\right)$ and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$).
(1R,2R)-2-Dimethylphenylsilyl-3-diphenylphosphinoyl-1-phenylpropyl methoxymethyl ether anti-43

By the general method described above, (S)-(E)-3-diphenyl-phosphinoyl-1-phenylprop-2-en-1-yl methoxymethyl ether 30 b ($200 \mathrm{mg}, 0.53 \mathrm{mmol}$), copper(I) cyanide ($196 \mathrm{mg}, 2.2 \mathrm{mmol}$) and dimethylphenylsilyllithium $\left(1.8 \mathrm{~cm}^{3}\right.$ of a $1.3 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF, 3.3 mmol), with addition of $\mathbf{3 0 b}$ at $-78^{\circ} \mathrm{C}$ and stirring for 3 h then gradually warming to room temperature gave a crude product which was purified by flash chromatography, eluting with $1: 1$ hexane-EtOAc, to yield the silyl phosphine oxides anti- and syn- $\mathbf{4 3}$ ($110 \mathrm{mg}, 41 \% ; 66: 34$ mixture) as an oil, spectroscopically identical to that obtained previously.

Treatment of silyl ether anti-43 with acidic methanol

Concentrated hydrochloric acid (9 drops) was added to a solution of anti-43 ($401 \mathrm{mg}, 0.77 \mathrm{mmol}$, anti:syn 88:12) in dry methanol ($8 \mathrm{~cm}^{3}$). The reaction mixture was refluxed for 1.5 h , quenched with water $\left(10 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with 5% methanol in EtOAc, to give the allylic phosphine oxides $44(201 \mathrm{mg}, 82 \%, E: Z 86: 14$ mixture) as needles, $\mathrm{mp} 171-172{ }^{\circ} \mathrm{C}$ (from EtOAc-hexane), spectroscopically identical to that obtained previously. ${ }^{15 b}$

($2 S, 3 S$)- and ($2 S, 3 R$)-4-Diphenylphosphinoyl-3-phenylsulfanyl-

 butan-2-yl trimethylsilyl ether anti- and syn-47A solution of thiophenol ($33 \mathrm{mg}, 0.30 \mathrm{mmol}$) and sodium hydride ($6 \mathrm{mg}, 60 \%$ dispersion in oil, 0.15 mmol) in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ was added by cannula to a stirred solution of $(S)-(E)-4-$ diphenylphosphinoylbut-3-en-2-yl trimethylsilyl ether 22 (52 $\mathrm{mg}, 0.15 \mathrm{mmol})$ in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ at room temperature. The reaction mixture was refluxed for 14 h , quenched with water $\left(5 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane ($3 \times 5 \mathrm{~cm}^{3}$), and the combined organic extracts washed with saturated sodium
bicarbonate ($5 \mathrm{~cm}^{3}$), saturated ammonium chloride $\left(5 \mathrm{~cm}^{3}\right)$ and brine ($5 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to yield the sulfides anti- and syn-47 ($34 \mathrm{mg}, 45 \%$; 64:36 mixture of diastereomers) as an oil, $R_{\mathrm{f}} 0.50$ (EtOAc); $[a]_{\mathrm{D}}^{20}+2.3\left(c 0.35\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1438(\mathrm{P}-\mathrm{Ph})$ and $1171(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.8-7.1(15 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ and SPh$), 4.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOSi}^{\text {maj }}+\mathrm{min}\right), 3.50(1 \mathrm{H}$, $\mathrm{dtd},{ }^{3} J_{\mathrm{PH}} 2.5, J 7$ and $\left.11.4, \mathrm{PhSC} H^{\text {min }}\right), 3.41\left(1 \mathrm{H}, \mathrm{dtd},{ }^{3} J_{\mathrm{PH}}\right.$ $4.0, J 7.0$ and 11.4, $\left.\mathrm{PhSC} H^{\mathrm{maj}}\right), 2.96\left(1 \mathrm{H}\right.$, ddd, $J 7.0,{ }^{2} J_{\mathrm{PH}}$ 12.9 and $\left.{ }^{2} J_{\mathrm{HH}} 15.5, \mathrm{PC}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\text {maj }}\right), 2.67\left(1 \mathrm{H}\right.$, ddd, $J 7,{ }^{2} J_{\mathrm{PH}}$ 12.9 and $\left.{ }^{2} J_{\mathrm{HH}} 15.5, \mathrm{PC} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\text {min }}\right), 2.54\left(1 \mathrm{H}\right.$, ddd, $J 7,{ }^{2} J_{\mathrm{PH}} 8.6$ and $\left.{ }^{2} J_{\mathrm{HH}} 15.5, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}{ }^{\text {min }}\right), 2.41\left(1 \mathrm{H}\right.$, ddd, $J 7,{ }^{2} J_{\mathrm{PH}} 9.4$ and $\left.{ }^{2} J_{\mathrm{HH}} 15.5, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}{ }^{\text {maj }}\right), 1.27\left(3 \mathrm{H}, \mathrm{d}, J 6.2, \mathrm{Me}^{\text {maj }}\right), 1.27(3 \mathrm{H}$, d, 6.3, $\left.\mathrm{Me}^{\text {min }}\right), 0.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}{ }^{\text {min }}\right)$ and $0.00(9 \mathrm{H}, \mathrm{s}$, $\mathrm{SiMe}_{3}{ }^{\text {maj }}$.

(R)-(\boldsymbol{E})-1-Diphenylphosphinoyl-3-[(N-benzylcarbamoyl)oxy]-hept-1-ene 48

Triethylamine ($130 \mathrm{mg}, 1.28 \mathrm{mmol}$) and benzyl isocyanate (128 $\mathrm{mg}, 0.96 \mathrm{mmol}$) were added dropwise to a stirred solution of (R)-(E)-1-diphenylphosphinoylhept-1-en-3-ol 18c ($100 \mathrm{mg}, 0.32$ mmol) in dry dichloromethane ($3 \mathrm{~cm}^{3}$). After stirring for 2 days, the reaction was quenched with saturated ammonium chloride $\left(5 \mathrm{~cm}^{3}\right)$, the aqueous suspension extracted with dichloromethane ($3 \times 5 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with 3:2 EtOAc-hexane, to yield the urethane 48 ($96 \mathrm{mg}, 65 \%$) as needles, $\mathrm{mp} 110-111^{\circ} \mathrm{C}$ (from EtOAc-hexane); $R_{\mathrm{f}} 0.51$ (EtOAc); $[a]_{\mathrm{D}}^{20}-25.3$ ($c 0.26$ in CHCl_{3}; 76% ee); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3448(\mathrm{NH}), 1720(\mathrm{C}=\mathrm{O}), 1437$ $(\mathrm{P}-\mathrm{Ph})$ and $1176(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-7.1(15 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), $6.67\left(1 \mathrm{H}\right.$, ddd, $J 4.6,17.1$ and ${ }^{3} J_{\mathrm{PH}} 21.6$, $\mathrm{PCH}=\mathrm{C} H), 6.39\left(1 \mathrm{H}, \mathrm{dd}, J 17.1\right.$ and $\left.{ }^{2} J_{\mathrm{PH}} 23.5, \mathrm{PCH}\right), 5.36$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}$ and CHO$), 4.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH} H_{\mathrm{A}} H_{\mathrm{B}}\right), 1.61(2 \mathrm{H}$, m), $1.31(4 \mathrm{H}, \mathrm{m})$ and $0.86(3 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{Me}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 155.7^{-}(\mathrm{C}=\mathrm{O}), 149.7^{+}(\mathrm{PCH}=\mathrm{CH}), 138.4^{-}$(ipso- Ph$)$, 133-126 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), $121.7^{+}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 101\right.$, $\mathrm{PCH}), 74.2^{+}$(d, $\left.{ }^{3} J_{\mathrm{PC}} 16.8, \mathrm{CHOCO}\right), 44.9^{-}\left(\mathrm{PhCH}_{2}\right), 33.6^{-}$, $27.0^{-}, 22.3^{-}$and $13.8^{+}(\mathrm{Me}) ; m / z 447.2\left(5 \% \mathrm{M}^{+}\right)$, 313 (70, BnNHCO) and 106 (100, BnNH) (Found: C, 72.5; H, 6.75; $\mathrm{N}, 3.1 \% ; \mathrm{M}^{+}$, 447.1976. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}$ requires $\mathrm{C}, 72.3 ; \mathrm{H}$, 6.95 ; N, 3.1\%; M, 447.1963).

(4S,5R)-3-Benzyl-5-butyl-4-(diphenylphosphinoylmethyl)oxazol-idin-2-one anti-49

Sodium hydride ($7 \mathrm{mg}, 60 \%$ dispersion in oil, 0.17 mmol) and (R)-(E)-1-diphenylphosphinoyl-3-[(N-benzylcarbamoyl)oxy]-hept-1-ene 48 ($62 \mathrm{mg}, 0.14 \mathrm{mmol}$) were dissolved in dimethylformamide $\left(1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h , the DMF removed using an oil pump, the residue diluted with saturated ammonium chloride $\left(5 \mathrm{~cm}^{3}\right)$ and the aqueous suspension extracted with dichloromethane $(3 \times 5$ $\left.\mathrm{cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product. Flash chromatography, eluting with 3:1 EtOAc-hexane gave the oxazolidinone $49(53 \mathrm{mg}, 86 \%, 88: 12$ mixture of diasteromers) as an oil, $R_{\mathrm{f}} 0.58$ (EtOAc); $[a]_{\mathrm{D}}^{20}+7.0$ (c 0.81 in $\mathrm{CHCl}_{3} ; 76 \%$ ee) (Found: M^{+}, 447.1974. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}$ requires $M, 447.1963) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1739(\mathrm{C}=\mathrm{O}), 1423$ ($\mathrm{P}-\mathrm{Ph}$) and $1176(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.7-7.0(15 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph$), 4.72\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}} 15.1, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 4.47$ $(1 \mathrm{H}, \mathrm{dt}, J 3.6$ and $7.6, \mathrm{CHO})$, $4.07\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}} 15.1\right.$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{N}\right), 3.45(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}), 2.57(1 \mathrm{H}, \mathrm{dt}, J 1.8$ and 13.6, $\left.\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.38\left(1 \mathrm{H}, \operatorname{td}, J 9.9\right.$ and $\left.14.6, \mathrm{PCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.48$ $(1 \mathrm{H}, \mathrm{m}), 1.37(1 \mathrm{H}, \mathrm{m}), 1.16(4 \mathrm{H}, \mathrm{m})$ and $0.79(3 \mathrm{H}, \mathrm{t}, J 6.6$, $\mathrm{Me}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 154.4^{-}$(C=O), 135.7^{-}(ipso- Ph), 133-126 ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and remaining Ph), $79.9^{+}(\mathrm{s}, \mathrm{CHO}), 55.1^{+}$ (CHN), 46.0- $\left(\mathrm{PhCH}_{2}\right), 34.1^{-}, 32.6^{-}\left(\mathrm{d},{ }^{1} J_{\mathrm{PC}} 67, \mathrm{PCH}_{2}\right)$, $26.4^{-}, 22.2^{-}$and $13.9^{+}(\mathrm{Me}) ; m / z 447.2\left(60 \%, \mathrm{M}^{+}\right)$and 202 ($100, \mathrm{Ph}_{2} \mathrm{POH}$).

(2RS,3SR,4SR)-4-Diphenylphosphinoyl-3,4-epoxypentan-2-ol syn-50

Lithium tert-butyl peroxide ($1.61 \mathrm{~cm}^{3}$ of a 0.23 M solution in THF, 0.37 mmol) was added to a stirred solution of the vinyl phosphine oxide $\mathbf{2 8}(71.0 \mathrm{mg}, 0.248 \mathrm{mmol})$ in dry THF ($2 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ under nitrogen. The mixture was cooled to $-10^{\circ} \mathrm{C}$ and stirred for 18 h . Water and dichloromethane were added, and the layers were separated. The aqueous layer was extracted into dichloromethane ($2 \times 3 \mathrm{~cm}^{3}$), and the combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated under reduced pressure and purifed by flash chromatography, eluting with $3: 1$ EtOAchexane, to yield the epoxide syn- $\mathbf{5 0}$ ($59.6 \mathrm{mg}, 79 \%$) as an oil (Found: $\mathrm{M}-\mathrm{Me}$, 287.0838. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{P}$ requires $M-\mathrm{Me}$, 287.0838); R_{F} (EtOAc) 0.19; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3100-3600(\mathrm{OH})$, $1440(\mathrm{PPh})$ and $1130(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.0-7.3$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.71(1 \mathrm{H}, \mathrm{dq}, J 7.6$ and $5.2, \mathrm{CHOH}), 2.68$ ($1 \mathrm{H}, \mathrm{dd}, J 7.7$ and 6.4), $2.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.54(3 \mathrm{H}, \mathrm{d}, J 10.6$, PCMe) and $1.24(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{MeCHOH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 132-127 ($\mathrm{Ph}_{2} \mathrm{PO}$), $66.5^{+}(\mathrm{CHOH}), 62.7^{+}(\mathrm{HOCH}-$ CHO), $58.3^{-}\left({ }^{1} J_{\mathrm{PC}} 101.6, \mathrm{PC}\right), 19.3^{+}(\mathrm{MeCHOH})$ and 13.1^{+} ${ }^{(}{ }^{2} J_{\mathrm{PC}}$ 13.6, PCMe); $m / z 287(1 \%, \mathrm{M}-\mathrm{Me}), 257$ (38, M $\mathrm{MeCHOH}), 219\left(40, \mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{H}_{2}\right), 202\left(86, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$).

($2 S, 3 R, 4 R$)- and ($2 S, 3 S, 4 S$)-4-Diphenylphosphinoyl-3,4-epoxy-1-triisopropylsilyloxybutan-2-ol 51

By the general method described above, the vinyl phosphine oxide $25(87.4 \mathrm{mg}, 0.197 \mathrm{mmol})$ gave, after 18 h at $-10^{\circ} \mathrm{C}$, and after purifcation by flash chromatography, eluting with $3: 1$ EtOAc-hexane, a 57:43 (by ${ }^{1} \mathrm{H}$ NMR) mixture of two diastereomers ($2 S, 3 R, 4 R$)- and ($2 S, 3 S, 4 S$)-4-diphenylphosphinoyl-3,4-epoxy-1-triisopropylsilyloxybutan-2-ol syn- and anti-51 (63.4 $\mathrm{mg}, 69 \%)$ as an oil, $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.49 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.9-$ $7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.9-3.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{PCHO}\right.$ and $\mathrm{CHOH}), 3.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CHO}\right)$ and $1.0-0.9(21 \mathrm{H}, \mathrm{m}$, $\left.{ }^{i} \mathrm{Pr}_{3} \mathrm{Si}\right)$.

($\mathbf{1}^{\prime}$) $)$ - N -Benzyl- N -(1'-phenylethyl)-2-diphenylphosphinoyl-1phenylethylamine 53a

Chlorotrimethylsilane ($0.63 \mathrm{~cm}^{3}, 5.0 \mathrm{mmol}$) was added to a stirred solution of the vinyl phosphine oxide $9 \mathrm{a}(304 \mathrm{mg}, 1.0$ mmol) in dry THF ($15 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$. In a separate vessel, butyllithium ($1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexanes; $2.5 \mathrm{~cm}^{3}, 3.5$ mmol) was added to a stirred solution of Davies's amine (738 $\mathrm{mg}, 3.5 \mathrm{mmol})$ in dry THF $\left(6 \mathrm{~cm}^{3}\right)$ and the solution of the amide was added slowly to the phosphine oxide at $-78{ }^{\circ} \mathrm{C}$ by cannula. The reaction was stirred at $-78^{\circ} \mathrm{C}$, warmed up to room temperature over 17 h , quenched by addition of water ($15 \mathrm{~cm}^{3}$), extracted with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product. The crude product was dissolved in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ and tetra- n-butylammonium fluoride ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 6$ $\mathrm{cm}^{3}, 6 \mathrm{mmol}$) was added, the reaction stirred for 1 h , quenched with water $\left(10 \mathrm{~cm}^{3}\right)$, extracted with dichloromethane $(3 \times 10$ cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude product which was purified by column chromatography, eluting with $1: 1$ hexane-EtOAc, to give the amine 53a ($334 \mathrm{mg}, 65 \%$) as a colourless oil, $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.53$; $[a]_{\mathrm{D}}^{20}+43.0\left(c 1.4\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: C, 80.1; H, 7.0; N, 3.1\%; MH ${ }^{+}$, 516.2488. $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NOP}$ requires C, $\left.81.5 ; \mathrm{H}, 6.6 ; \mathrm{N}, 2.7 \% ; M \mathrm{H}^{+}, 516.2456\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1179(\mathrm{P}=\mathrm{O})$ and $1438(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.01-$ $7.42(25 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.45(1 \mathrm{H}, \mathrm{ddd}, J$ 2.9, 8.8 and $10.9, \mathrm{CHN})$, $3.96(1 \mathrm{H}, \mathrm{q}, J 6.8, \mathrm{C} H \mathrm{Me}), 3.80\left(1 \mathrm{H}, \mathrm{d}, J 15.0, \mathrm{NCH}_{2}\right), 3.68$ $\left(1 \mathrm{H}, \mathrm{d}, J 15.0, \mathrm{NCH}_{2}\right), 2.78\left(1 \mathrm{H}, \mathrm{dt}, J 3.0\right.$ and $14.9, \mathrm{Ph}_{2}-$ POCH_{2}), $2.56\left(1 \mathrm{H}\right.$, ddd, $J 8.9,11.0$ and $\left.14.9, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right), 1.22$ $(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 150.0^{-}, 144.5^{-}, 142.5^{-}$ $(\mathrm{Ph}), 121.4-134.3(\mathrm{~m}, \mathrm{Ph}), 59.0^{+}, 56.6^{+}(\mathrm{CHMePh}, \mathrm{CHPh})$, $50.9^{-}\left(\mathrm{CH}_{2}\right), 34.5^{-}\left(\mathrm{d}, J 69.0, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right), 14.2^{+}(\mathrm{Me}) ; m / z(+\mathrm{ve}$

FAB) $516\left(27 \%, \mathrm{MH}^{+}\right), 410(18, \mathrm{M}-\mathrm{CHMePh})$ and $201(100$, $\mathrm{Ph}_{2} \mathrm{PO}$).

(1'R)-N-Benzyl- N-(1'-phenylethyl)-2-diphenylphosphinoyl-1-(4-methoxyphenyl)ethylamine 53b

By the general method described above, the vinyl phosphine oxide 9b ($334 \mathrm{mg}, 1.0 \mathrm{mmol}$) gave the amine 53b ($415 \mathrm{mg}, 76 \%$) as a colourless oil, $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.47 ;[a]_{\mathrm{D}}^{20}+35\left(c 1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1179(\mathrm{P}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) 7.11-7.42 ($22 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and Ar), $6.59(2 \mathrm{H}, \mathrm{d}, J 8.7, \mathrm{Ar}$), $4.39(1 \mathrm{H}$, ddd, $J 2.9,8.0$ and 11.2, CHN), $3.97(1 \mathrm{H}, \mathrm{q}, J 6.8$, $\mathrm{C} H \mathrm{Me})$, $3.79\left(1 \mathrm{H}, \mathrm{d}, J 15.0, \mathrm{NCH}_{2}\right.$), $3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, 3.64 $\left(1 \mathrm{H}, \mathrm{d}, J 15.0, \mathrm{NCH}_{2}\right), 2.75\left(1 \mathrm{H}, \mathrm{dt}, J 3.0\right.$ and $14.9, \mathrm{Ph}_{2}-$ $\left.\mathrm{POCH}_{2}\right), 2.48\left(1 \mathrm{H}\right.$, ddd, $J 9.0,11.3$ and $\left.14.9, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right), 1.23$ $(3 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{Me}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 158.6^{-}(C-\mathrm{OMe})$, 144.6^{-}, $142.7^{-}(\mathrm{Ph}), 126.4-134.9(\mathrm{~m}, \mathrm{Ph}, \mathrm{MeOPh}), 113.4^{+}$ (MeOPh), 58.6 ${ }^{+}$, 56.4 ${ }^{+}$(CHMePh, CHPhOMe), 55.1 ${ }^{+}$(OMe), $50.9^{-}\left(\mathrm{CH}_{2}\right), 35.1^{-}\left(\mathrm{d}, J 69.5, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right), 13.8^{+}(\mathrm{Me}) ; m / z(+\mathrm{ve}$ FAB) $546\left(11 \%, \mathrm{MH}^{+}\right), 440(9, \mathrm{M}-\mathrm{CHMePh}), 335$ (33 , $\mathrm{M}-\mathrm{NR}_{2}$) and 201 (100, $\mathrm{Ph}_{2} \mathrm{PO}$) (Found: C, 78.1; H, 6.7; N, $2.4 \% ; \mathrm{MH}^{+}, 546.2561 . \mathrm{C}_{36} \mathrm{H}_{37} \mathrm{NO}_{2} \mathrm{P}$ requires C, $78.4 ; \mathrm{H}, 6.4 ; \mathrm{N}$, $\left.2.7 \% ; M \mathrm{H}^{+}, 546.2561\right)$.

(1"R)-N-Benzyl- N-($1^{\prime \prime}$-phenylethyl)-2-diphenylphosphinoyl-1-furan-2'-ylethylamine 53c

By the general method described above, the vinyl phosphine oxide 9 c ($322 \mathrm{mg}, 1.0 \mathrm{mmol}$) gave the amine 53c ($172 \mathrm{mg}, 34 \%$) as a colourless oil, $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.54$; $[a]_{\mathrm{D}}^{20}-16\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: C, 78.2; H, 6.7; N, 3.0\%; MH^{+}, 506.22. $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{P}$ requires $\left.\mathrm{C}, 78.4 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.8 \% ; M \mathrm{H}^{+}, 506.2249\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1187(\mathrm{P}=\mathrm{O})$ and $1438(\mathrm{P}-\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.14-$ $7.47\left(21 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, 4^{\prime}-\mathrm{H}\right), 6.14\left(1 \mathrm{H}, \mathrm{dd}, J 1.8\right.$ and $\left.3.1,3^{\prime}-\mathrm{H}\right)$, $5.98\left(1 \mathrm{H}, \mathrm{d}, J 3.1,2^{\prime}-\mathrm{H}\right), 4.43(1 \mathrm{H}, \mathrm{dt}, J 2.6$ and 11.0, CHN), $4.07(1 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{C} H \mathrm{Me}), 3.72\left(1 \mathrm{H}, \mathrm{d}, J 14.4, \mathrm{NCH}_{2}\right), 3.64$ $\left(1 \mathrm{H}, \mathrm{d}, J 14.4, \mathrm{NCH}_{2}\right), 3.07\left(1 \mathrm{H}, \mathrm{td}, J 11.2\right.$ and $14.6, \mathrm{Ph}_{2}-$ $\left.\mathrm{POCH}_{2}\right), 2.61\left(1 \mathrm{H}, \mathrm{dt}, J 2.7\right.$ and $\left.14.6, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right)$ and 1.07 $(3 \mathrm{H}, \mathrm{d}, J 6.7, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 152.9^{-}\left(\mathrm{C}-1^{\prime}\right), 144.6^{-}$, 141.4^{-}(Ph), 126.7-133.7 (m, Ph, C-4'), 110.3 ${ }^{+}$, 108.6^{+}(C-2' and C-3'), $56.6^{+}, 50.0^{+}$(CHMePh, CHPhOMe), 50.8- $\left(\mathrm{CH}_{2}\right)$, $33.6^{-}\left(\mathrm{d}, J 67.5, \mathrm{Ph}_{2} \mathrm{POCH}_{2}\right)$ and $16.0^{+}(\mathrm{Me}) ; m / z(+\mathrm{ve} \mathrm{FAB})$ $506\left(11 \%, \mathrm{MH}^{+}\right), 400(6, \mathrm{M}-\mathrm{CHMePh}), 335\left(8, \mathrm{M}-\mathrm{NR}_{2}\right)$ and $201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$.

1-Benzoylamido-2-diphenylphosphinoyl-1-phenylethane 56a

The amine 53a ($515 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in glacial acetic acid (5 ml), 10% palladium on charcoal (10%) was added and the reaction was stirred vigorously under a hydrogen atmosphere (4 atm) at $50^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was filtered through Celite, washing with methanol, and the solution was basified with saturated sodium bicarbonate solution until the pH was greater than 8 . The washings were extracted with dichloromethane ($4 \times 100 \mathrm{ml}$), dried over MgSO_{4} and evaporated to give a crude product as a yellow oil, which was used for the next step without further purification. The crude product was dissolved in dry dichloromethane (2 ml), cooled to $0{ }^{\circ} \mathrm{C}$, pyridine ($89 \mu \mathrm{l}, 1.1 \mathrm{mmol}$) and benzoyl chloride ($139 \mu \mathrm{l}$, $1.2 \mathrm{mmol})$ added and the reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, quenched with 3 M hydrochloric acid, extracted with dichloromethane $(3 \times 10 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a crude product, which was purified by column chromatography, eluting with $1: 1$ hexane-EtOAc, to give amide 56a ($153 \mathrm{mg}, 36 \%$) as colourless needles, R_{F} (EtOAc) $0.41 ;[a]_{\mathrm{D}}^{20}+17$ (c 1.1 in CHCl_{3}) (Found: C, 76.1; H, 5.9; N, 2.5; P, 7.6\%; MH^{+}, 426.1623. $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{P}$ requires C, $76.2 ; \mathrm{H}, 5.7 ; \mathrm{N}, 3.3 ; \mathrm{P}, 7.3 \%$; MH^{+}, 426.1623); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1178(\mathrm{P}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1658(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.95(1 \mathrm{H}, \mathrm{d}, J 5.6, \mathrm{NH})$, $7.98(2 \mathrm{H}, \mathrm{m}, \mathrm{COPh}), 7.06-7.79(18 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.40(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHN})$ and $2.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.5^{-}$
(CON), 141.9-, 141.8-, 125.8-133.9 (Ph), 51.1+ (CHN) and $35.9^{-}\left(\mathrm{d}, J 66.8, \mathrm{CH}_{2}\right) ; m / z(+\mathrm{ve} \mathrm{FAB}) 426\left(45 \%, \mathrm{MH}^{+}\right), 307$ ($65, \mathrm{M}-\mathrm{NCOPh}$) and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$).
($1 S$)-1-[(S)-2-Methoxy-2-phenylacetamido]-2-diphenylphos-phinoyl-1-(4-methoxyphenyl)ethane syn-58 and (1S)-1-[(R)-2-methoxy-2-phenylacetamido]-2-diphenylphosphinoyl-1-(4methoxyphenyl)ethane anti-58

The amine 53b ($350 \mathrm{mg}, 0.64 \mathrm{mmol}$) was dissolved in 5 ml glacial acetic acid, 10% palladium on charcoal (105 mg) was added, and the solution was stirred vigorously under a hydrogen atmosphere (4 atm) at $50^{\circ} \mathrm{C}$ for 30 h . The reaction mixture was filtered through Celite, washed with methanol, and was basified with saturated sodium bicarbonate solution until the pH was greater than 8 . The aqueous fraction was extracted with dichloromethane ($4 \times 100 \mathrm{ml}$), dried over MgSO_{4} and evaporated to give a crude product which was used for the next step without further purification. The crude product was dissolved in dichloromethane (8 ml), racemic O-methylmandelic acid $(110 \mathrm{mg}, 0.66 \mathrm{mmol})$ and DCC ($187 \mathrm{mg}, 0.9 \mathrm{mmol}$) were added and the reaction was stirred at room temperature for 24 h , filtered through Celite and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with $1: 1$ hexane-EtOAc to give the amide syn$58(130 \mathrm{mg}, 30 \%)$ as a colourless oil, R_{F} (EtOAc) $0.38 ;[a]_{\mathrm{D}}+8.8$ (c 3.8 in CHCl_{3}) (Found: C, 72.3; H, 6.2; N, 2.5. $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{P}$ requires $\mathrm{C}, 72.1 ; \mathrm{H}, 6.1 ; \mathrm{N}, 2.8 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3404$ (NH), 1673 (C=O), $1438(\mathrm{P}-\mathrm{Ph})$ and $1178(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 8.34(1 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{NH}), 7.62-7.31(15 \mathrm{H}, \mathrm{m}), 7.14(2 \mathrm{H}$, d, $J 8.7$), 6.69 ($2 \mathrm{H}, \mathrm{d}, J 8.7$), 5.03 (1 H , apparent qd, $J 6$ and 12, CHN), $4.5(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOMe}), 3.71(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.35(3 \mathrm{H}, \mathrm{s}$, OMe), $2.93\left(1 \mathrm{H}\right.$, ddd, $J 8.4,10.4$ and 19.3, $\mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$) and 2.68 $\left(1 \mathrm{H}\right.$, ddd, $J 5.4,10.4$ and $\left.15.2, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 170.3 (C=O), 158.8, 137.2, 133.6-127.1 (m), 113.9, 83.8 (CHN), $57.3(\mathrm{OMe})$, $55.2(\mathrm{OMe}), 49.6$ (CHOMe), 36.4 and $35.7\left(\mathrm{CH}_{2}\right)$; m / z (EI) $499\left(5 \% \mathrm{M}^{+}\right), 378(30), 335(90), 298\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}\right)$ and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$).
Also obtained was the amide anti-58 ($125 \mathrm{mg}, 27 \%$) as a colourless oil, $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.25 ;[a]_{\mathrm{D}}-30\left(c 1.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{C}, 72.3 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.1 \mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{P}$ requires C, 72.1; H, 6.1; N, $2.8 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3407(\mathrm{NH}), 1672(\mathrm{C}=\mathrm{O}), 1438(\mathrm{P}-\mathrm{Ph})$, $1178(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.30(1 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{NH})$, 7.62-7.31 ($15 \mathrm{H}, \mathrm{m}$), 7.01 ($2 \mathrm{H}, \mathrm{d}, J 8.7$), $6.60(2 \mathrm{H}, \mathrm{d}, J 8.7), 5.25$ (1 H , apparent qd, $J 6$ and 12, CHN), $4.53(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOMe})$, 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $2.93(1 \mathrm{H}$, ddd, $J 7.6$, 10.4 and 18.0, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $2.68(1 \mathrm{H}$, ddd, $J 5.6,10.4$ and 15.8 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 170.1(\mathrm{C}=\mathrm{O}), 158.7,137.2$, 133.6-127.1 (m), 113.8, 83.9 (CHN), 57.6 (OMe), 55.2 (OMe), 49.1 (CHOMe), 36.1 and $35.9\left(\mathrm{CH}_{2}\right)$; m/z (EI) $499\left(5 \%, \mathrm{M}^{+}\right)$, 378 (25), 335 (90), $298\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{PO}\right)$ and 201 (100, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.

(1S)-1-[(S)-2-Methoxy-2-phenylacetamido]-2-diphenylphosph-inoyl-1-(4-methoxyphenyl)ethane syn-58

By the same method, the amine 53b ($166 \mathrm{mg}, 0.33 \mathrm{mmol}$) and (S)-mandelic acid gave the amide syn- 58 ($130 \mathrm{mg}, 58 \%$), spectroscopically identical to that obtained previously.

Acknowledgements

A. N. thanks Jonathan Medlock for his help in the preparation of this manuscript.

References

1 J. Clayden and S. Warren, Angew. Chem., Int. Ed. Engl., 1996, 35, 241.

2 D. Cavalla, W. B. Cruse and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1987, 1883.
3 D. Hall, A.-F. Sévin and S. Warren Tetrahedron Lett., 1991, 32, 7123.

4 J. Clayden, E. W. Collington, R. B. Lamont and S. Warren, Tetrahedron Lett., 1993, 34, 2203.
5 C. Guéguen, P. O'Brien, S. Warren and P. Wyatt, J. Organomet. Chem., 1997, 529, 279.
6 A. Nelson and S. Warren, Tetrahedron Lett., 1996, 37, 1501.
7 (a) T. Minami and J. Motoyoshiya, Synthesis, 1992, 333; (b) I. C. Baldwin, R. P. Beckett and J. M. J. Williams, Synthesis, 1996, 34.
8 D. J. Collins, S.-A. Mollard, N. Rose and J. M. Swann, Aust. J. Chem., 1974, 27, 2365.

9 K. M. Pietrusiewicz, M. Zablocka and J. Monkiewicz, J. Org. Chem., 1984, 49, 1522.
10 I. Fleming, S. Gil, A. K. Sarkar and T. Schmidlin, J. Chem. Soc., Perkin Trans. 1, 1992, 3351.
11 (a) A. Brandi, P. Cannarò, K. M. Pietrusiewicz, M. Zablocka and M. Wieczorek, J. Org. Chem., 1989, 54, 3073; (b) A. Brandi, S. Cicchi, A. Goti and K. M. Pietrusiewicz, Gazz. Chim. Ital., 1991, 121, 285.
12 C. Santelli-Rouvier, Synthesis, 1988, 64.
13 D. H. Williams and I. Fleming, Spectroscopic methods in organic chemistry, 5th edn., McGraw-Hill, London, 1995, p. 168.
14 Y. L. Bennani and K. B. Sharpless, Tetrahedron Lett., 1993, 34, 2083.

15 (a) A. Nelson, P. O'Brien and S. Warren, Tetrahedron Lett., 1995, 36, 2685; (b) A. Nelson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1997, 2645.
16 J. Clayden and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1994, 2811.

17 P. O'Brien and S. Warren, Tetrahedron: Asymmetry, 1996, 7, 3431.

18 Preliminary communication: J. Clayden, A. Nelson and S. Warren, Tetrahedron Lett., 1997, 38, 3471.
19 (a) P. M. Ayrey, M. A. Bolton, A. D. Buss, N. Greeves, D. Levin, P. Wallace and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1992, 3407; (b) P. Wallace and S. Warren, J. Chem Soc., Perkin Trans. 1, 1992, 3169.

20 K. Okuma, Y. Tanaka, H. Ohta and H. Matsuyama, Bull. Chem. Soc. Jpn., 1993, 66, 2623.
21 E. Domínguez and J. C. Carretero, Tetrahedron Lett., 1993, 34, 5803.

22 N. Feeder, G. Hutton and S. Warren, Tetrahedron Lett., 1994, 35, 5911.

23 (a) E. J. Corey and A. W. Gross, Tetrahedron Lett., 1984, 25, 495; (b) C. Guéguen, P. O'Brien, S. Warren and P. Wyatt, J. Organomet. Chem., 1997, 529, 279.
24 (a) D. J. Ager and I. Fleming, J. Chem. Soc., Chem. Commun., 1978,

177; (b) D. J. Ager, I. Fleming and S. K. Patel, J. Chem. Soc., Perkin Trans. 1, 1981, 2520.
25 I. Fleming, in Organocopper Reagents, ed. R. J. K. Taylor, Oxford University Press, Oxford, 1994, p. 256.
26 D. J. Ager, "The Peterson Olefination Reaction", in Organic Reactions, ed. L. A. Paquette, 1990, vol. 38, p. 1.
27 (a) Y. Yamamoto, Y. Chounan, S. Nishii, T. Ibuka and H. Kitahara, J. Am. Chem. Soc., 1992, 114, 7652; (b) T. Ibuka and Y. Yamamoto, Synlett, 1992, 769.
28 M. Hirama, H. Hioki, S. Itô and C. Kabuto, Tetrahedron Lett., 1988, 29, 3121.
29 R. F. W. Jackson, S. P. Standen and W. Clegg, Tetrahedron Lett., 1991, 32, 5393.
30 J. Leonard, Contemp. Org. Synth., 1994, 387.
31 S. G. Davies and T. D. McCarthy, Synlett, 1995, 700.
32 (a) E. Juaristi, P. Murer and D. Seebach, Synthesis, 1993, 1243; (b) C. M. Cain, R. P. C. Cousins, G. Coumbarides and N. S. Simpkins, Tetrahedron, 1990, 46, 523.
33 Preliminary communication: B. Bartels, C. Gonzalez Martín, A. Nelson, M. G. Russell and S. Warren, Tetrahedron Lett., 1998, 39, 1637.

34 J. Medlock and S. Warren, unpublished observations.
35 J. Barluenga, R. Sanz and F. J. Fañanás, Tetrahedron Lett., 1997, 38, 2763.

36 B. H. Lipshutz, M. R. Wood and C. W. Lindsley, Tetrahedron Lett., 1995, 36, 4385.
37 J. F. Costello, S. G. Davies and O. Ichihara, Tetrahedron: Asymmetry, 1994, 5, 1999.
38 J. E. Davies, R. P. Davies, L. Dunbar, P. R. Raithby, M. G. Russell, R. Snaith and S. Warren, Angew. Chem., Int. Ed. Engl., 1997, 36, 2334.

39 (a) T. Hayashi, M. Konishi, M. Fukushima, K. Kanehira, T. Hioki and M. Kumada, J. Org. Chem., 1983, 48, 2195; (b) T. Hayashi, M. Fukushima, M. Konishi and M. Kumada, Tetrahedron Lett., 1980, 21, 79.
40 I. W. Davies, T. Gallagher, R. B. Lamont and D. I. C. Scopes, J. Chem. Soc., Chem. Commun., 1992, 335.

41 W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923.

42 J. B. Baudin, G. Hareau, S. A. Julia, R. Lorne and O. Ruel, Bull. Soc. Chim Fr., 1993, 130, 856.
43 E. E. Aboujaoude and N. Collignon, Synth. Commun., 1987, 17, 1559.

Paper 9/02414J

[^0]: \dagger Present address: Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK M13 9PL.
 \ddagger Present address: School of Chemistry, University of Leeds, Leeds, UK LS2 9JT.

[^1]: \S_{35} For another β-elimination of a β-amino organolithium, see reference 35.
 © Lithium amides react slowly with chlorotrimethylsilane at $-78^{\circ} \mathrm{C} .{ }^{36}$

